日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即 令.解得 查看更多

           

          題目列表(包括答案和解析)

          中,已知 ,面積,

          (1)求的三邊的長;

          (2)設(shè)(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是

          ①寫出所滿足的等量關(guān)系;

          ②利用線性規(guī)劃相關(guān)知識求出的取值范圍.

          【解析】第一問中利用設(shè)中角所對邊分別為

              

          又由 

          又由 

                 又

          的三邊長

          第二問中,①

          依題意有

          作圖,然后結(jié)合區(qū)域得到最值。

           

          查看答案和解析>>

          如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點(diǎn),|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?

          (II)當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

          (Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

          【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當(dāng)且僅當(dāng)

          (3)令

          ∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>

          設(shè)向量.

          (Ⅰ)求;

          (Ⅱ)若函數(shù),求的最小值、最大值.

          【解析】第一問中,利用向量的坐標(biāo)表示,表示出數(shù)量積公式可得

          第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103361401546097_ST.files/image003.png">,即換元法

          得到最值。

          解:(I)

          (II)由(I)得:

          .

          時,

           

          查看答案和解析>>

          設(shè)f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

          (Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

          (Ⅱ)若f (θ)=,其中,求cos(θ)的值;

          【解析】第一問中,

          變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;

          第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而

          進(jìn)而得到結(jié)論。

          (Ⅰ) 解:

          。…………………………………3

          變換的步驟是:

          ①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3

          (Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2

          (1)當(dāng)時,;…………2

          (2)當(dāng)時;

           

          查看答案和解析>>

          已知函數(shù),

          (Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;

          (Ⅱ)令函數(shù)),求函數(shù)的最大值的表達(dá)式;

          【解析】第一問中利用令,

          ,

          第二問中,=

          =

          =, ,則借助于二次函數(shù)分類討論得到最值。

          (Ⅰ)解:令,

          ,

          的單調(diào)遞減區(qū)間為:…………………4

          (Ⅱ)解:=

          =

          =

          , ,則……………………4

          對稱軸

          ①   當(dāng)時,=……………1

          ②  當(dāng)時,=……………1

          ③  當(dāng)時,   ……………1

          綜上:

           

          查看答案和解析>>


          同步練習(xí)冊答案