日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 可得≤48.又a1=3,d=1, 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列滿足(I)求數(shù)列的通項公式;

          (II)若數(shù)列,前項和為,且證明:

          【解析】第一問中,利用

          ∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

          第二問中, 

          進一步得到得    即

          是等差數(shù)列.

          然后結(jié)合公式求解。

          解:(I)  解法二、

          ∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

          (II)     ………②

          由②可得: …………③

          ③-②,得    即 …………④

          又由④可得 …………⑤

          ⑤-④得

          是等差數(shù)列.

               

           

          查看答案和解析>>

          (2013•河西區(qū)一模)某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
          廣告費用x(萬元) 2 3 4 5
          銷售額y(萬元) 27 39 48 54
          根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為(  )

          查看答案和解析>>

          已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an.數(shù)形結(jié)合可得a1=0,a2=1,…則a3=
           
          ,當n是奇數(shù)時,an=
           

          查看答案和解析>>

          10進制的四位自然數(shù)的反序數(shù)是指千位與個位位置對調(diào),百位與十位位置對調(diào)的數(shù),例如4 852的反序數(shù)就是2 584.1955年,卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種變換:任給出四位數(shù)ao,用ao的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n,得出數(shù)a1=m-n,然后繼續(xù)對a1重復上述變換,得數(shù)a2,…,如此進行下去,卡普耶卡發(fā)現(xiàn),無論ao是多大的四位數(shù),只要四個數(shù)字不全相同,最多進行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t.請你研究兩個10進制四位數(shù)5 298和4 852,可得k=
          7
          7
          ;四位數(shù)t=
          6174
          6174

          查看答案和解析>>

          已知展開式
          sinx
          x
          =1-
          x2
          3!
          +
          x4
          5!
          -
          x6
          7!
          +…對x∈R且x≠0恒成立,方程
          sinx
          x
          =0有無究多個根:±π,±2π,…±nπ,…,則1-
          x2
          3!
          +
          x4
          5!
          -
          x6
          7!
          +…=(1-
          x2
          π2
          )(1-
          x2
          22π2
          )…(1-
          x2
          n2π2
          )
          …,比較兩邊x2的系數(shù)可以推得1+
          1
          22
          +
          1
          32
          +…+
          1
          n2
          +…=
          π2
          6
          .設(shè)代數(shù)方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個不同的根:±x1,±x2,…±xn,類比上述方法可得a1=
          1
          x
          2
          1
          +
          1
          x
          2
          2
          +…+
          1
          x
          2
          n
          1
          x
          2
          1
          +
          1
          x
          2
          2
          +…+
          1
          x
          2
          n
          .(用x1,x2,…,xn表示)

          查看答案和解析>>


          同步練習冊答案