日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [評(píng)析]是函數(shù)單調(diào)遞增的充分不必要條件. 查看更多

           

          題目列表(包括答案和解析)

          在數(shù)列中,

          (Ⅰ)求、、、并推測(cè);

          (Ⅱ)用數(shù)學(xué)歸納法證明你的結(jié)論.

          【解析】第一問利用遞推關(guān)系可知,、、、,猜想可得

          第二問中,①當(dāng)時(shí),=,又,猜想正確

          ②假設(shè)當(dāng)時(shí)猜想成立,即

          當(dāng)時(shí),

          =

          =,即當(dāng)時(shí)猜想也成立

          兩步驟得到。

          (2)①當(dāng)時(shí),=,又,猜想正確

          ②假設(shè)當(dāng)時(shí)猜想成立,即,

          當(dāng)時(shí),

          =

          =,即當(dāng)時(shí)猜想也成立

          由①②可知,對(duì)于任何正整數(shù)都有成立

           

          查看答案和解析>>

          已知函數(shù)y=x²-3x+c的圖像與x恰有兩個(gè)公共點(diǎn),則c=

          (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

          【解析】若函數(shù)的圖象與軸恰有兩個(gè)公共點(diǎn),則說明函數(shù)的兩個(gè)極值中有一個(gè)為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

           

          查看答案和解析>>

          已知

          (1)求的單調(diào)區(qū)間;

          (2)證明:當(dāng)時(shí),恒成立;

          (3)任取兩個(gè)不相等的正數(shù),且,若存在使成立,證明:

          【解析】(1)g(x)=lnx+,=        (1’)

          當(dāng)k0時(shí),>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

          當(dāng)k>0時(shí),>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

          (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),的變化情況如表

          x

          1

          (1,e)

          e

          (e,+)

           

          0

          +

          h(x)

          e-2

          0

          所以h(x)0, ∴f(x)2x-e                    (5’)

          設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時(shí),=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時(shí), 2x-ef(x)恒成立.

          (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

          ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時(shí),,則。

          依題意得:,即    解得

          第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          函數(shù)是定義在上的奇函數(shù),且。

          (1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

          (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

          (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且

          解得,

          (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

          (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

          解:(1)是奇函數(shù),。

          ,………………2分

          ,又,,

          (2)任取,且,

          ,………………6分

          ,

          ,,,,

          在(-1,1)上是增函數(shù)。…………………………………………8分

          (3)單調(diào)減區(qū)間為…………………………………………10分

          當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案