日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由于二面角與二面角的大小互補(bǔ). 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:

          (Ⅰ)異面直線的距離;

          (Ⅱ)二面角的平面角的正切值.

          【解析】第一問中,利用建立空間直角坐標(biāo)系

          解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

          在三棱柱中有

          ,

          設(shè)

          側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

          (II)由已知有故二面角的平面角的大小為向量的夾角.

           

          查看答案和解析>>

          (2005•靜安區(qū)一模)已知正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)E、F分別在底面正方形的邊AB、BC上,且AE=CF=
          23
          ,點(diǎn)G為棱A1B1的中點(diǎn).
          (1)在圖中畫出正方體過三點(diǎn)E、F、G的截面,并保留作圖痕跡;
          (2)(理)求(1)中的截面與底面ABCD所成銳二面角的大。
          (3)(文)求出直線EC1與底面ABCD所成角的大小.

          查看答案和解析>>

          如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點(diǎn)A,PA=AB=1,點(diǎn)M,N分別是PD,PB的中點(diǎn).
          (I)求證:PB∥平面ACM;
          (II)求證:MN⊥平面PAC;
          (III)若
          PF
          =2
          FC
          ,求平面FMN與平面ABCD所成二面角的余弦值.

          查看答案和解析>>

          (2013•成都一模)如圖,矩形ABCD中,BC=2,AB=1,PA丄平面ABCD,BE∥PA,BE=
          1
          2
          PA
          ,F(xiàn)為PA的中點(diǎn).
          (I)求證:DF∥平面 PEC
          (II)若PE=
          2
          ,求平面PEC與平面PAD所成銳二面角的余弦值.

          查看答案和解析>>


          同步練習(xí)冊答案