日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 綜合①②③可得.實(shí)數(shù)的取值范圍是.------12分 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

          (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

          (2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          ,

          第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          第三問,

               若成等比數(shù)列,則,

          即.

          ,可得,即

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足

          ,

          (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時(shí)n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          函數(shù)是定義在上的奇函數(shù),且。

          (1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

          (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

          (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

          解得,

          (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

          (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

          解:(1)是奇函數(shù),。

          ,………………2分

          ,又,,

          (2)任取,且,

          ,………………6分

          ,

          ,,,

          在(-1,1)上是增函數(shù)!8分

          (3)單調(diào)減區(qū)間為…………………………………………10分

          當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

           

          查看答案和解析>>

          將平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類比,易得下列結(jié)論:
          (1)
          a
          b
          =
          b
          a
          ;
          (2)(
          a
          b
          )•
          c
          =
          a
           •(
          b
          c
          )
          ;
          (3)
          a
          •(
          b
          +
          c
          )=
          a
          b
          +
          a
          • 
          c
          ;
          (4)由
          a
          b
          =
          a
          c
          (
          a
          0
          )
          可得
          b
          =
          c

          以上通過類比得到的結(jié)論正確的有( 。

          查看答案和解析>>

          (2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時(shí)變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項(xiàng)式展開,逐個(gè)求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
          n•2n-1
          n•2n-1
           n∈N*

          查看答案和解析>>

          關(guān)于平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類比,易得下列結(jié)論:
          a
          b
          =
          b
          a
          ;②(
          a
          b
          )•
          c
          =
          a
          •(
          b
          c
          )
          ;③
          a
          •(
          b
          +
          c
          )=
          a
          b
          +
          a
          c
          ;
          |
          a
          b
          |=|
          a
          |•|
          b
          |
          ;⑤由
          a
          b
          =
          a
          c
          (
          a
          0
          )
          ,可得
          b
          =
          c

          以上通過類比得到的結(jié)論正確的有(  )
          A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

          查看答案和解析>>


          同步練習(xí)冊答案