日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即 3分當x→2+時,函數無限接近于2, 查看更多

           

          題目列表(包括答案和解析)

          函數是定義在上的奇函數,且。

          (1)求實數a,b,并確定函數的解析式;

          (2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

          (3)寫出的單調減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且

          解得,

          (2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

          (3)中,由2知,單調減區(qū)間為,并由此得到當,x=-1時,,當x=1時,

          解:(1)是奇函數,。

          ,,………………2分

          ,又,,,

          (2)任取,且,

          ,………………6分

          ,,,

          在(-1,1)上是增函數。…………………………………………8分

          (3)單調減區(qū)間為…………………………………………10分

          當,x=-1時,,當x=1時,。

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當時,求證:;

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          (本小題滿分12分)為了解甲、乙兩廠的產品質量,采用分層抽樣的方法從甲、乙兩廠生產的產品中分別抽取14件和5件,測量產品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產品的測量數據:

          編號

          1

          2

          3

          4

          5

          x

          169

          178

          166

          175

          180

          y

          75

          80

          77

          70

          81

          已知甲廠生產的產品共有98件.

          (I)求乙廠生產的產品數量;

          (Ⅱ)當產品中的微量元素x,y滿足x≥175,且y≥75時,該產品為優(yōu)等品,用上述樣本數據估計乙廠生產的優(yōu)等品的數量;

          (Ⅲ)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優(yōu)等品數的分布列及其均值(即數學期望).

           

          查看答案和解析>>

          (本小題滿分13分)

                 為了解甲、乙兩廠的產品質量,采用分層抽樣的方法從甲、乙兩廠生產的產品中分別抽出取14件和5件,測量產品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產品的測量數據:

          編號

          1

          2

          3

          4

          5

          x

          169

          178

          166

          175

          180

          y

          75

          80

          77

          70

          81

          (1)已知甲廠生產的產品共有98件,求乙廠生產的產品數量;

          (2)當產品中的微量元素x,y滿足x≥175,且y≥75時,該產品為優(yōu)等品。用上述樣本數據估計乙廠生產的優(yōu)等品的數量;

          (3)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優(yōu)等品數的分布列極其均值(即數學期望)。

          查看答案和解析>>

          已知函數f(x)=cos(2x+)+sinx·cosx

          ⑴ 求函數f(x)的單調減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

           ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

          【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

          解得+kp≤x≤+kp 

          第二問中,∵xÎ[0, ],∴2x-Î[-,],

          ∴當2x-=-,即x=0時,f(x)min=-,

          當2x-, 即x=時,f(x)max=1

          第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

          ∴ 2kp-<2a-+2kp,∴ cos(2a-)=

          利用構造角得到sin2a=sin[(2a-)+]

          解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

          sin2x-cos2x=sin(2x-)                 ……………………3分

          ⑴ 令+2kp≤2x-+2kp,

          解得+kp≤x≤+kp          ……………………5分

          ∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

          ⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

          ∴當2x-=-,即x=0時,f(x)min=-,        ……………………8分

          當2x-, 即x=時,f(x)max=1          ……………………9分

          ⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

          ∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

          ∴ sin2a=sin[(2a-)+]

          =sin(2a-)·cos+cos(2a-)·sin   ………12分

          ××

           

          查看答案和解析>>


          同步練習冊答案