日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當時仍滿足.此時.解得 查看更多

           

          題目列表(包括答案和解析)

          設A是如下形式的2行3列的數(shù)表,

          a

          b

          c

          d

          e

          f

          滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0

          為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記中的最小值。

          (1)對如下表A,求的值

          1

          1

          -0.8

          0.1

          -0.3

          -1

          (2)設數(shù)表A形如

          1

          1

          -1-2d

          d

          d

          -1

          其中,求的最大值

          (3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。

          【解析】(1)因為,,所以

          (2)

          因為,所以,

          所以

          當d=0時,取得最大值1

          (3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)

          a

          b

          c

          d

          e

          f

          任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設,,

          得定義知,,,

          從而

               

          所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1

          【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹?shù)倪壿嬎季S能力

           

          查看答案和解析>>

          材料:采訪零向量

            W:你好!零向量.我是《數(shù)學天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進行一次采訪呢?

            零向量:當然可以,我們向量王國隨時恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務.

            W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

            零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

            W:你與其他向量有什么共同之處呢?

            零向量:既然我是向量王國的一個成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進行加、減法運算時滿足交換律和結合律,還定義了與實數(shù)的積.

            W:你有哪些值得驕傲的特殊榮耀呢?

            零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運算中,我與實數(shù)0很有相似之處.

            W:你有如此多的榮耀,那么是否還有煩惱之事呢?

            零向量:當然有了,在向量王國還有許多“權利和義務”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進行了限制.所有這些確實給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯.但我還是很高興有這次機會與大家見面.

            W:OK!采訪就到這里吧,非常感謝你的合作,再見!

            零向量:Bye!

          閱讀上面的材料回答下面問題.

          應用零向量時應注意哪些問題?

          查看答案和解析>>


          同步練習冊答案