日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又因?yàn)?則.即.又..--------------.4分 查看更多

           

          題目列表(包括答案和解析)

           

          已知函數(shù).

          (Ⅰ)討論函數(shù)的單調(diào)性; 

          (Ⅱ)設(shè),證明:對(duì)任意.

              1.選修4-1:幾何證明選講

              如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn)

          (Ⅰ)證明:∽△;

          (Ⅱ)若的面積,求的大小.

          證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

          因?yàn)椤?i>AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

          故△ABE∽△ADC.

          (Ⅱ)因?yàn)椤?i>ABE∽△ADC,所以,即AB·ACAD·AE.

          SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

          則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.

           

          查看答案和解析>>

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.

          【解析】第一問(wèn)中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問(wèn)中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,

          因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面平面,∴平面,,又,∴平面. 可得證明

          (3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

          為平面的法向量.∴利用法向量的夾角公式,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、,

          ,又點(diǎn),,∴

          ,且不共線,∴

          平面,平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,,即,

          ,∴平面.   ………8分

          (Ⅲ)∵,,∴平面

          為面的法向量.∵,

          為平面的法向量.∴

          的夾角為,即二面角的大小為

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時(shí),求證:

          (Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

          ,得證。

          第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時(shí),存在點(diǎn)Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

          (Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時(shí),存在點(diǎn)Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長(zhǎng)軸長(zhǎng)等于4,離心率為

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          (Ⅱ)若點(diǎn)(0,1), 問(wèn)是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問(wèn)中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

          第二問(wèn)中,

          假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

           因?yàn)閨ME|=|NE|所以MNEF所以

          (i)其中若時(shí),則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

           (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

           因?yàn)閨ME|=|NE|所以MNEF所以

          (i)其中若時(shí),則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案