日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (II)若..是兩兩不相等的正數(shù).且..依次成等差數(shù)列.試判斷與的大小關(guān)系.并證明你的結(jié)論. 查看更多

           

          題目列表(包括答案和解析)

          本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
          (1)選修4-2:矩陣與變換
          設(shè)矩陣 M=
          a0
          0b
          (其中a>0,b>0).
          (I)若a=2,b=3,求矩陣M的逆矩陣M-1;
          (II)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C’:
          x2
          4
          +y2=1
          ,求a,b的值.
          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
          在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
          x=
          3
          cos∂
          y=sin∂
          (∂為參數(shù))

          (I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
          π
          2
          ),判斷點(diǎn)P與直線l的位置關(guān)系;
          (II)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
          (3)(本小題滿分7分)選修4-5:不等式選講
          設(shè)不等式|2x-1|<1的解集為M.
          (I)求集合M;
          (II)若a,b∈M,試比較ab+1與a+b的大小.

          查看答案和解析>>

          本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
          (1)選修4-2:矩陣與變換
          設(shè)矩陣 (其中a>0,b>0).
          (I)若a=2,b=3,求矩陣M的逆矩陣M-1
          (II)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C’:,求a,b的值.
          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
          在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
          (I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
          (II)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
          (3)(本小題滿分7分)選修4-5:不等式選講
          設(shè)不等式|2x-1|<1的解集為M.
          (I)求集合M;
          (II)若a,b∈M,試比較ab+1與a+b的大。

          查看答案和解析>>

          已知函數(shù)f(x)=log2(x+m),m∈R
          ( I)若f(1),f(2),f(4)成等差數(shù)列,求m的值;
          ( II)若a、b、c是兩兩不相等的正數(shù),且a、b、c依次成等差數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          已知函數(shù)f(x)=log2(x+m),m∈R
          ( I)若f(1),f(2),f(4)成等差數(shù)列,求m的值;
          ( II)若a、b、c是兩兩不相等的正數(shù),且a、b、c依次成等差數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          已知函數(shù)f(x)=log2(x+m),m∈R
          ( I)若f(1),f(2),f(4)成等差數(shù)列,求m的值;
          ( II)若a、b、c是兩兩不相等的正數(shù),且a、b、c依次成等差數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          一、       選擇題

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          A

          C

          C

          C

          D

          B

          B

          C

          C

          B

          二、填空題

          題號(hào)

               11

              12

             13  

            14(1)

            14(2)

          答案

             6

            2

           

            3

          三、解答題:本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

          15.解:(Ⅰ),不等式的解為,

          ,

          (Ⅱ)由(Ⅰ)可知,,

          ,

          16、解:

           

            。↖)函數(shù)的最小正周期是        ……………………………7分

            。↖I)∴   ∴   

               ∴               

              所以的值域?yàn)椋?sub>                 …………12分

          17、解:(1)因?yàn)?sub>,成等差數(shù)列,所以2f(2)=f(1)+f(4),

          即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

          (2+m)2=(1+m)(4+m),得m=0.

          (2) 若、、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

          f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

          因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

          所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

          所以:f(a)+f(c)<2f(b).

          18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱

          為奇函數(shù),則  ∴a=0

          (Ⅱ)∴在上單調(diào)遞增

          上恒大于0只要大于0即可,∴

          上恒大于0,a的取值范圍為

          19. 解:(Ⅰ)設(shè)的公差為,則:,,

          ,,∴,∴. ………………………2分

          .  …………………………………………4分

          (Ⅱ)當(dāng)時(shí),,由,得.     …………………5分

          當(dāng)時(shí),,,

          ,即.  …………………………7分

            ∴.   ……………………………………………………………8分

          是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

          (Ⅲ)由(2)可知:.   ……………………………10分

          . …………………………………11分

          .    ………………………………………13分

          .  …………………………………………………14分

          20.解:(Ⅰ)設(shè)函數(shù)

             (Ⅱ)由(Ⅰ)可知

          可知使恒成立的常數(shù)k=8.

          (Ⅲ)由(Ⅱ)知 

          可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

          即以為首項(xiàng),8為公比的等比數(shù)列. 則 

           


          同步練習(xí)冊(cè)答案