日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①是周期函數(shù) ②是它的一條對稱軸 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)f(x)=|sinx|+|cosx|(x∈R),如下關(guān)于它的性質(zhì)敘述正確的個數(shù)有
          數(shù)學(xué)公式是它的一個周期;        ②它的值域[1,數(shù)學(xué)公式];
          ③直線x=數(shù)學(xué)公式是它的圖象的一條對稱軸; ③它在[-數(shù)學(xué)公式,0]上單調(diào)遞增.


          1. A.
            1
          2. B.
            2
          3. C.
            3
          4. D.
            4

          查看答案和解析>>

          函數(shù)f(x)=|sinx|+|cosx|(x∈R),如下關(guān)于它的性質(zhì)敘述正確的個數(shù)有
          是它的一個周期;                              
          ②它的值域[1,];
          ③直線x=是它的圖象的一條對稱軸;  
          ④它在[﹣,0]上單調(diào)遞增.
          [     ]
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          設(shè)函數(shù)f(x)=
          a
          b
          -
          3
          2
          ,
          a
          =(3sin(ωx+φ),
          3
          sin(ωx+φ)),
          b
          =(sin(ωx+φ),cos(ωx+φ))
          其周期為π,且x=
          π
          12
          是它的一條對稱軸.
          (1)求f(x)的解析式;
          (2)當(dāng)x∈[0,
          π
          4
          ]
          時,不等式f(x)+a>0恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          若函數(shù)y=Asin(ωx+φ)+m的最大值為4,最小值為0,最小正周期為
          π
          2
          ,直線x=
          π
          3
          是其圖象的一條對稱軸,則它的解析式是( 。
          A、y=4sin(4x+
          π
          6
          B、y=2sin(2x+
          π
          3
          C、y=2sin(4x+
          π
          3
          D、y=2sin(4x+
          π
          6
          )+2

          查看答案和解析>>

          若函數(shù)yAsin(ωxφ)+m的最大值為4,最小值為0,最小正周期為,直線x=是其圖象的一條對稱軸,則它的一個解析式是       (    )

          A.y=4sin                                 B.y=2sin+2

          C.y=2sin+2                            D.y=2sin+2

           

          查看答案和解析>>

          一、       選擇題

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          A

          C

          C

          C

          D

          B

          B

          C

          C

          B

          二、填空題

          題號

               11

              12

             13  

            14(1)

            14(2)

          答案

             6

            2

           

            3

          三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

          15.解:(Ⅰ),不等式的解為

          ,

          (Ⅱ)由(Ⅰ)可知,,

          ,

          16、解:

           

            。↖)函數(shù)的最小正周期是        ……………………………7分

             (II)∴   ∴   

               ∴               

              所以的值域為:                 …………12分

          17、解:(1)因為,成等差數(shù)列,所以2f(2)=f(1)+f(4),

          即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

          (2+m)2=(1+m)(4+m),得m=0.

          (2) 若、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

          f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

          因為(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

          所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

          所以:f(a)+f(c)<2f(b).

          18. 解:(Ⅰ)的定義域關(guān)于原點對稱

          為奇函數(shù),則  ∴a=0

          (Ⅱ)∴在上單調(diào)遞增

          上恒大于0只要大于0即可,∴

          上恒大于0,a的取值范圍為

          19. 解:(Ⅰ)設(shè)的公差為,則:,

          ,∴,∴. ………………………2分

          .  …………………………………………4分

          (Ⅱ)當(dāng)時,,由,得.     …………………5分

          當(dāng)時,,,

          ,即.  …………………………7分

            ∴.   ……………………………………………………………8分

          是以為首項,為公比的等比數(shù)列. …………………………………9分

          (Ⅲ)由(2)可知:.   ……………………………10分

          . …………………………………11分

          .    ………………………………………13分

          .  …………………………………………………14分

          20.解:(Ⅰ)設(shè)函數(shù)

             (Ⅱ)由(Ⅰ)可知

          可知使恒成立的常數(shù)k=8.

          (Ⅲ)由(Ⅱ)知 

          可知數(shù)列為首項,8為公比的等比數(shù)列

          即以為首項,8為公比的等比數(shù)列. 則 

           


          同步練習(xí)冊答案