日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)令.由條件.得.所以. 查看更多

           

          題目列表(包括答案和解析)

          解:因為有負根,所以在y軸左側有交點,因此

          解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


           13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

          若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

          (2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

          數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

          查看答案和解析>>

          如圖,已知直線)與拋物線和圓都相切,的焦點.

          (Ⅰ)求的值;

          (Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;

          (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線兩點,求△的面積的取值范圍.

          【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

          ,解得舍去)

          與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以,

          第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          ,由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

          因為是定點,所以點在定直線

          第三問中,設直線,代入結合韋達定理得到。

          解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

          ,解得舍去).     …………………(2分)

          與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以,.      ……(2分)

          (Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          ,由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

          因為是定點,所以點在定直線上.…(2分)

          (Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

          的面積范圍是

           

          查看答案和解析>>


          同步練習冊答案