日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設它們交于點R,若a,b.

             (1)用a b表示

             (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

          查看答案和解析>>

          (本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。

          (1)求動點P的軌跡方程。

          (2)若過點A的直線L與動點P的軌跡交于M、N兩點,且

          其中Q(-1,0),求直線L的方程.

          查看答案和解析>>

          (本小題滿分14分)

           已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m          

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)設a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。

          查看答案和解析>>

          (本小題滿分14分)

          已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。

          (Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

          (Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

          (Ⅲ)設0<ab,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有

          aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

          查看答案和解析>>

          (本小題滿分14分)

          如圖(1),是等腰直角三角形,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).

          (Ⅰ)求證:;

          (Ⅱ)求三棱錐的體積.

          查看答案和解析>>

          一.選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          答案

          C

          A

          C

          B

          B

          A

          B

          D

          二.填空題:

          9.6、30、10;                 10.?5;               11.;

          12.?250;                     13.;              14.③④

          三.解答題:

          15.解: ;  ………5分

          方程有非正實數(shù)根

           

          綜上: ……………………12分16.解:(I)設袋中原有個白球,由題意知

          可得(舍去)

          答:袋中原有3個白球. 。。。。。。。。4分

          (II)由題意,的可能取值為1,2,3,4,5

           

          所以的分布列為:

          1

          2

          3

          4

          5

          。。。。。。。。。9分

          (III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

          答:甲取到白球的概率為.。。。。。。。。13分

          17.解:(1)由.,∴=1;。。。。。。。。。4分

          (2)任取∈(1,+∞),且設,則:

          >0,

          在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

          (3)當直線∈R)與的圖象無公共點時,=1,

          <2+=4=,|-2|+>2,

          得:.。。。。。。。。13分

          18.(Ⅰ)證明:∵底面底面, ∴

             又∵平面,平面,,

              ∴平面3分

          (Ⅱ)解:∵點分別是的中點,

          ,由(Ⅰ)知平面

          平面,

          ,,

          為二面角的平面角,

          底面,∴與底面所成的角即為,

          ,∵為直角三角形斜邊的中點,

          為等腰三角形,且,∴

          (Ⅲ)過點于點,∵底面,

             ∴底面,為直線在底面上的射影,

             要,由三垂線定理的逆定理有要

           設,則由,

           又∴在直角三角形中,,

          ,

          ∵ ,

          在直角三角形中,,

           ,即時,

          (Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設,則,,設,則

          ,,

          ,時時,.

           

           

          19  證明:(1)對任意x1, x2∈R, 當 a0,

          =                         =……(3分)

          ∴當時,,即

            當時,函數(shù)f(x)是凸函數(shù).   ……(4分)

           (2) 當x=0時, 對于a∈R,有f(x)≤1恒成立;當x∈(0, 1]時, 要f(x)≤1恒成立

          , ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

          由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

          (3)令,∵,∴,……………..(11)分

          ,則,故

          ,則

          ;,……………..(12)分

          ,則;∴時,.

          綜上所述,對任意的,都有;……………..(13)分

          所以,不是R上的凸函數(shù). ……………..(14)分

          對任意,有,

          所以,不是上的凸函數(shù). ……………..(14)分

          20. 解:(1)設數(shù)列的前項和為,則

          ……….4分

          (2)為偶數(shù)時,

          為奇數(shù)時,

          ………9分

          (3)方法1、因為所以

          ,時,,

          又由,兩式相減得

           所以若,則有………..14分

          方法2、由,兩式相減得

          ………..11分

          所以要證明,只要證明

          或①由:

          所以…………………14分

          或②由:

          …………………14分

          數(shù)學歸納法:①當

          ②當

          綜上①②知若,則有.

          所以,若,則有.。。。。。。。。。14分

           

           


          同步練習冊答案