日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故當(dāng)時(shí).有.即當(dāng)時(shí).. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)為實(shí)數(shù)).

          (Ⅰ)當(dāng)時(shí),求的最小值;

          (Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

          【解析】第一問中由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          第二問.

          當(dāng)時(shí),,在上有,遞增,符合題意;  

          ,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

          解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

          當(dāng)時(shí),; 當(dāng)時(shí),. 故.

          (Ⅱ) .

          當(dāng)時(shí),,在上有,遞增,符合題意;  

          ,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

            .   綜上

           

          查看答案和解析>>

          已知集合

          A=, B=.

          (1)若,求A∩B,;

          (2)若A,求實(shí)數(shù)m的取值范圍。

          【解析】第一問首先翻譯A,B為最簡集合,即為

          A=

          B=

          然后利用當(dāng)m=-1時(shí),則有 B=

           , 

          第二問,因?yàn)锳

          所以滿足A

          得到結(jié)論。

          解:因?yàn)锳=

          ,

          B=

          當(dāng)m=-1時(shí),則有 B=

           , 

          (2) 因?yàn)锳,

          所以滿足A

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得

          從而

          所以有

               

               

               

               

                

          綜上,

           

          查看答案和解析>>

          已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

          (1)若方程有兩個(gè)相等的根,求的解析式;

          (2)若的最大值為正數(shù),求的取值范圍.

          【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

          設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

          第二問中,

          解:(1)∵f(x)+2x>0的解集為(1,3),

             ①

          由方程

                        ②

          ∵方程②有兩個(gè)相等的根,

          即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

          a=-1/5代入①得:

          (2)由

           

           解得:

          故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設(shè),,

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>


          同步練習(xí)冊答案