日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 得.當(dāng)時(shí).函數(shù)無極值點(diǎn). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ln(1+ax),g(x)=x2-ax,其中a為實(shí)數(shù).
          (Ⅰ)當(dāng)a=2時(shí),求函數(shù)y=f(x)+g(x)的極小值;
          (Ⅱ)是否存在實(shí)數(shù)a,使得函數(shù)y=f(x)與函數(shù)y=g(x)在區(qū)間[1,+∞)上單調(diào)性相同?若存在,請(qǐng)求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由;
          (Ⅲ)若對(duì)任意的實(shí)數(shù)a∈(1,2),總存在一個(gè)與a無關(guān)的實(shí)數(shù)x1,且x1∈[
          1
          2
          ,1]
          ,使得f(x1)+g(x1)>m-
          1
          5
          a2
          恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時(shí),,則

          依題意得:,即    解得

          第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,!上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時(shí)

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          設(shè)三次函數(shù),在處取得極值,其圖像在處的切線的斜率為

          (1)求證:;

          (2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

          (3)問是否存在實(shí)數(shù)是與無關(guān)的常數(shù)),當(dāng)時(shí),恒有恒成立?若存在,試求出的最小值;若不存在,請(qǐng)說明理由。

          查看答案和解析>>

           (注意:在試題卷上作答無效)

          給出定義在(0,+∞)上的三個(gè)函數(shù):,,,已知在x=1處取極值.

          (1)確定函數(shù)的單調(diào)性;

          (2)求證:當(dāng)時(shí),恒有成立;

          (3)把函數(shù)的圖象向上平移6個(gè)單位得到函數(shù)的圖象,試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

           

           

           

           

           

           

          查看答案和解析>>

          甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測(cè)算,對(duì)于函數(shù),,及任意的,當(dāng)甲公司投入萬元作宣傳時(shí),乙公司投入的宣傳費(fèi)若小于萬元,則乙公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn);當(dāng)乙公司投入萬元作宣傳時(shí),甲公司投入的宣傳費(fèi)若小于萬元,則甲公司有失敗的危險(xiǎn),否則無失敗的危險(xiǎn). 設(shè)甲公司投入宣傳費(fèi)x萬元,乙公司投入宣傳費(fèi)y萬元,建立如圖直角坐標(biāo)系,試回答以下問題:

          (1)請(qǐng)解釋;

          (2)甲、乙兩公司在均無失敗危險(xiǎn)的情況下盡可能少地投入宣傳費(fèi)用,問此時(shí)各應(yīng)投入多少宣傳費(fèi)?

          (3)若甲、乙分別在上述策略下,為確保無失敗的危險(xiǎn),根據(jù)對(duì)方所投入的宣傳費(fèi),按最少投入費(fèi)用原則,投入自己的宣傳費(fèi):若甲先投入萬元,乙在上述策略下,投入最少費(fèi)用;而甲根據(jù)乙的情況,調(diào)整宣傳費(fèi)為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費(fèi)為如此得當(dāng)甲調(diào)整宣傳費(fèi)為時(shí),乙調(diào)整宣傳費(fèi)為;試問是否存在的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案