日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18. 從神七飛船帶回的某種植物種子由于在太空中被輻射,我們把它們稱作“太空種子 這種“太空種子 成功發(fā)芽的概率為,不發(fā)生基因突變的概率為,種子發(fā)芽與發(fā)生基因突變是兩個相互獨立事件,科學(xué)家在實驗室對“太空種子 進(jìn)行培育,從中選出優(yōu)良品種.(1)這種“太空種子 中的某一粒種子既發(fā)芽又發(fā)生基因突變的概率是多少?(2)四粒這種“太空種子 中至少有兩粒既發(fā)芽又發(fā)生基因突變的概率是多少? 查看更多

           

          題目列表(包括答案和解析)

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
          OT
          =
          M1M
          +
          N1N
          ,記點T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)

          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          (07年福建卷理)(本小題滿分12分)在中,,

          (Ⅰ)求角的大。

          (Ⅱ)若最大邊的邊長為,求最小邊的邊長.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

          (I)求f (x)的最小值h(t);

          (II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

          (I)求證:AB1⊥平面A1BD;

          (II)求二面角A-A1D-B的大小.

          查看答案和解析>>

          一、CBDAC。拢模茫茫痢D 

          二、13.。场14.4  15.  16.

           

          三、解答題

          17.解:(I)∵(2a-c)cosB=bcosC,

          ∴(2sinA-sinC)cosB=sinBcosC.    …………………2分

          即2sinAcosB=sinBcosC+sinCcosB

          =sin(B+C)

          ∵A+B+C=π,∴2sinAcosB=sinA   ………………………4分

          ∵0<A<π,∴sinA≠0.

          ∴cosB=          …………………………………………5分

          ∵0<B<π,∴B=       ………………………………………6分

            (II)=4ksinA+cos2A.     ……………………………………7分

          =-2sin2A+4ksinA+1,A∈(0,)……………………………………9分

          設(shè)sinA=t,則t∈.

          則=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.…………………………10分

          ∵k>1,∴t=1時,取最大值.

          依題意得,-2+4k+1=5,∴k=.………………………………………………12分

          18. 解:設(shè)某一粒種子成功發(fā)芽為事件A,某一粒種子發(fā)生基因突變?yōu)槭录聞t其概率分別是

          P(A)=,P(B)=                           ……………………2分

          (1)這種“太空種子”中的某一粒種子既發(fā)芽又發(fā)生基因突變的概率

                                  ……………………7分

          (2)四粒這種“太空種子”中至少有兩粒既發(fā)芽又發(fā)生基因突變的概率是    …………………12分

           

          19.解:(。┯梢阎傻

          當(dāng)時,兩式相減得

          即.當(dāng)時,得

          ,從而,故總有,,

          又從而,即數(shù)列是以6為首項,2為公比的等比數(shù)列.

          則.              ………6分

          (2)由(1)知,,   ………8分

          從而則

                       ………12分

          20.解:【方法一】(1)證明:在線段BC1上取中點F,連結(jié)EF、DF

          則由題意得EF∥DA1,且EF=DA1,

          ∴四邊形EFDA1是平行四邊形

          ∴A1E∥FD,又A1E平面BDC1,F(xiàn)D平面BDC1

          ∴A1E∥平面BDC1                              …6分

          (2)由A1E⊥B1C1,A1E⊥CC1,得A1E⊥平面CBB1C1,過點E作

          EH⊥BC1于H,連結(jié)A1H,則∠A1HE為二面角A1-BC1-B1的平面角        …8分

          在Rt△BB1C1中,由BB1=8,B1C1=4,得BC1邊上的高為,∴EH=,

          又A1E=2,∴tan∠A1HE==>∴∠A1HE>60°,                    …11分

          ∴M在棱AA1上時,二面角M-BC1-B1總大于60°,故棱AA1上不存在使二面角M-BC1-B1的大小為60°的點M.                                                    …12分

           

          【方法二】建立如圖所示的空間直角坐標(biāo)系,題意知B(-2,0,0),

          D(2,40),A1(2,8,0), C1(0,8,2),B1(-2,8,0), E(-1,8,),

          =(-4,-4,0), =(-2,4,2),=(-3,0, ),

          =(-4,-8, 0), =(-2,0, 2),=(0,8,0),

          =(2,8, 2).                                  

          (1)證明:∵=2(+)∴A1E∥平面BDC1                    …6分

          (2)設(shè)=(x,y,1)為平面A1BC1的一個法向量,則,且,即解得∴=(,,1),同理,設(shè)=(x,y,1)為平面B1BC1的一個法向量,則,且,即解得∴=(-,0,1),∴cos<,>==-

          ∴二面角A1-BC1-B1為arccos. 即arctan,又∵>

          ∴二面角A1-BC1-B1大于60°, ∴M在棱AA1上時,二面角M-BC1-B1總大于60°,故棱AA1上不存在使二面角M-BC1-B1的大小為60°的點M.                …………  12分

           

           

          21解:(1)易知,               ……………………………1分

          所以,設(shè),則

          ……4分

          因為,故當(dāng)時,即點P為橢圓短軸端點時,有最小值-2,

          當(dāng)時,即點P為橢圓長軸端點時,有最大值1. ……………………6分

          (2)顯然直線不滿足題設(shè)條件;             …  …………………………7分

          可設(shè)直線:,,

          聯(lián)立,消去整理得,

          ,        

          由得 ① ………9分

           又,則又,

          =,,

           、凇                              ……………11分

          故由①②得的取值范圍是    .………………12分

          22.(文)解:(1),由題意得,解得,經(jīng)檢驗滿足條…4分

          (2)由(1)知,,………5分

          令,則,(舍去).

          的變化情況如下表:

          x

          -1

          (-1,0)

          0

          (0,1)

          1

           

          0

          +

           

          -1

          -4

          -3

           

           

           

           

           

          ∴在上單調(diào)遞減,在上單調(diào)遞增,

          ∴,如圖構(gòu)造在上的圖象.

          又關(guān)于x的方程在上恰有兩個不同的實數(shù)根,

          則,即m的取值范圍是.                  ………8分

          (3)解法一:因存在,使得不等式成立,

          故只需要的最大值即可,

          ∵,∴.………………………10分

          ①若,則當(dāng)時,,在單調(diào)遞減.

          ,∴當(dāng)時,,

          ∴當(dāng)時,不存在,使得不等式成立.……………12分

          ②當(dāng)a>0時隨x的變化情況如下表:

          x

          +

          0

          ∴當(dāng)時,,由得.

          綜上得a>3,即a的取值范圍是(3,+∞). …              ………………………………14分

           

          解法二:根據(jù)題意,只需要不等式在上有解即可,即在上有解. 即不等式在上有解即可.    …………………………………10分

          令,只需要                                  ………12分

          而,當(dāng)且僅當(dāng),即時“=”成立.

          故a>3,即a的取值范圍是(3,+∞).                                 ………14分

           

           

           

           

           

           


          同步練習(xí)冊答案