日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若中..由上可知.每一步都可以逆推回去.得到. 查看更多

           

          題目列表(包括答案和解析)

          (2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
          (i)a•
          b2+c2-a2
          2bc
          =b•
          a2+c2-b2
          2ac
          ?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果
          等腰或直角三角形
          等腰或直角三角形

          查看答案和解析>>

          給出問題:已知滿足,試判定的形狀.某學生的解答如下:

          解:(i)由余弦定理可得,

          ,

          ,

          是直角三角形.

          (ii)設外接圓半徑為.由正弦定理可得,原式等價于

          是等腰三角形.

          綜上可知,是等腰直角三角形.

          請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果.           .

           

          查看答案和解析>>

          已知數列的前項和為,且 (N*),其中

          (Ⅰ) 求的通項公式;

          (Ⅱ) 設 (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結論。

          解:(Ⅰ)當時,由.  ……2分

          若存在

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設,

          .又,也即,所以,也即,又因為,所以.即

                              ………10分

          證法四:(數學歸納法)①當時, ,命題成立;

             ②假設時,命題成立,即,

             則當時,

              即

          故當時,命題成立.

          綜上可知,對一切非零自然數,不等式②成立.           ………………10分

          ②由于

          所以,

          從而.

          也即

           

          查看答案和解析>>

          給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
          (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

          查看答案和解析>>

          給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
          (i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
          故△ABC是直角三角形.
          (ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
          故△ABC是等腰三角形.
          綜上可知,△ABC是等腰直角三角形.
          請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

          查看答案和解析>>

          1. 由函數6ec8aac122bd4f6e知,當時,,且6ec8aac122bd4f6e,則它的反函數過點(3,4),故選A.  

           

          2.∵,∴,則,即,.,選B.

          3. 由平行四邊形法則,,

          ,

          ,

          ,當P為中點時,取得最小值.選B.

          4. 設是橢圓的一個焦點,它是橢圓三個頂點,,構成的三角形的垂心(如圖).由,即,∴,得,解得,選A.

           

          5. 設正方形邊長為,,則.在由正弦定理得,又在由余弦定理得,于是,,選C.

          6. 在底面上的射影知,為斜線在平面上的射影,∵,由三垂線定理得,∵,所以直線與直線重合,選A.

           

          7. 過A作拋物線的準線的垂線AA1交準線A1,  過B作橢圓的右準線的垂線交右準線于則有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周長=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,

          由可得兩曲線的交點x=,xB∈(,2),

          ∴3+xB∈(,4),即△ANB周長取值范圍是(,4),選B.

           

          8. 先將3,5兩個奇數排好,有種排法,再將4,6兩個偶數插入3,5中,有種排法,最后將1,2 當成一個整體插入5個空位中,所以這樣的六位數的個數為,選B.


          同步練習冊答案