日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量是平面直角坐標(biāo)系內(nèi)分別與軸.軸正方向相同的兩個(gè)單位向量.并且..則的面積為 查看更多

           

          題目列表(包括答案和解析)

          (文)設(shè)i、j是平面直角坐標(biāo)系內(nèi)分別與x軸、y軸正方向相同的兩個(gè)單位向量,已知a=3i-j,b=mi+2j(m為實(shí)數(shù)),且ab,則|b|=______________

          查看答案和解析>>

          已知A,B,C是△ABC的三個(gè)內(nèi)角,且向量=cos+sin的模長(zhǎng)為||=,其中,分別是平面直角坐標(biāo)系x軸、y軸上的單位向量。
          (1)求證:tanAtanB是定值;
          (2)求tan(A+B)的最小值。

          查看答案和解析>>

          第二章《平面向量》測(cè)試(4)(新人教A版必修4).doc
           

          (本題滿分14分)

          已知向量\s\up6(→(→)=3i-4j,\s\up6(→(→)=6i-3j,\s\up6(→(→)=(5-mi-(4+mj,其中ij分別是直角坐標(biāo)系內(nèi)x軸與y軸正方向上的單位向量.

          (1)若A、B、C能構(gòu)成三角形,求實(shí)數(shù)m應(yīng)滿足的條件;

          (2)若ΔABC為直角三角形,且∠A為直角,求實(shí)數(shù)m的值. 

          查看答案和解析>>

          本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          (1)求矩陣M的逆矩陣;
          (2)求矩陣M的特征值及特征向量;
          C.選修4-2:矩陣與變換
          在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.若直線l與圓C相切,求r的值.
          D.選修4-5:不等式選講
          已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:

          查看答案和解析>>

          (2012•徐州模擬)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          21
          34

          (1)求矩陣M的逆矩陣;
          (2)求矩陣M的特征值及特征向量;
          C.選修4-2:矩陣與變換
          在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
          x=-1+rcosθ
          y=rsinθ
          為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
          π
          4
          )=2
          2
          .若直線l與圓C相切,求r的值.
          D.選修4-5:不等式選講
          已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
          4
          3

          查看答案和解析>>

          一、選擇題

          DDDCC         CDAAB

          二、填空題

          11、           12、        13、     14、17    0     15、②③

          三、解答題

          16、⑴

                   

                

           

          17、(1),其定義域?yàn)?sub>.

          .……………………………………………………2′

          當(dāng)時(shí),當(dāng)時(shí),故當(dāng)且僅當(dāng)時(shí),.   6′

          (2)

          由(1)知,     …………………………9′

          …………………………………………12′′18、(1)符合二項(xiàng)分布

          0

          1

          2

          3

          4

          5

          6

          ……6′

          (2)可取15,16,18.

          *表示勝5場(chǎng)負(fù)1場(chǎng),;………………………………7′

          表示勝5場(chǎng)平1場(chǎng),;………………………………8′

          *表示6場(chǎng)全勝,.……………………………………………9′

          .………………………………………………………………12(

          19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由題意可知、、………2′

                             的坐標(biāo)為     

          ,              

                                而,

          的公垂線…………………………………………………………4′

          (2)令面的法向量

          ,則,即而面的法向量

          ……6′ ∴二面角的大小為.……8′

          (3)    面的法向量為     到面的距離為

               即到面的距離為.…………12′

          20、解:(1)假設(shè)存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

          (2)∵當(dāng)時(shí),

          ,,則

          相反,而,則.以此類推有:

          ,;……7分

          (3)∵當(dāng)時(shí),,,則

           …9分

          。)……10分

          .……12分

          21、解(1)設(shè)     

                    

          ①-②得

             ……………………2′

          直線的方程是  整理得………………4′

          (2)聯(lián)立解得

          設(shè)

          的方程為聯(lián)立消去,整理得

          ………………………………6′

           

                    又

          …………………………………………8′

          (3)直線的方程為,代入,得

          ………………………………………………10′

          三點(diǎn)共線,三點(diǎn)共線,且在拋物線的內(nèi)部。

          故由可推得

            同理可得:

          ………………………………14′

           

           

            1. <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>