日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 令2-2=1-2.解得=或=-2.即為所求. -------14分 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)

          (I)求的單調(diào)區(qū)間;

          (II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.

          【解析】第一問定義域為真數(shù)大于零,得到.                            

          ,則,所以,得到結(jié)論。

          第二問中, ().

          .                          

          因為0<a<2,所以,.令 可得

          對參數(shù)討論的得到最值。

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          (I)定義域為.           ………………………1分

          .                            

          ,則,所以.  ……………………3分          

          因為定義域為,所以.                            

          ,則,所以

          因為定義域為,所以.          ………………………5分

          所以函數(shù)的單調(diào)遞增區(qū)間為,

          單調(diào)遞減區(qū)間為.                         ………………………7分

          (II) ().

          .                          

          因為0<a<2,所以,.令 可得.…………9分

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          ①當(dāng),即時,            

          在區(qū)間上,上為減函數(shù),在上為增函數(shù).

          所以.         ………………………10分  

          ②當(dāng),即時,在區(qū)間上為減函數(shù).

          所以.               

          綜上所述,當(dāng)時,;

          當(dāng)時,

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當(dāng)時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當(dāng)

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè),

          求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(,

           

          查看答案和解析>>


          同步練習(xí)冊答案