日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)已知橢圓C的方程為過C的右焦點(diǎn)F的直線與C相交于A.B兩點(diǎn).向量共線.則直線AB的方程是 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),c=
          2
          b
          ,c為半焦距.過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
          3
          2

          (1)求橢圓的方程.
          (2)(理)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.
          (文)若直線y=x+k(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使OC⊥OD(O為原點(diǎn))?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          (09年濟(jì)寧質(zhì)檢文)(14分)

             已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)過橢圓C的右焦點(diǎn)F作直線l交橢圓CAB兩點(diǎn),交y軸于M點(diǎn),若,求的值.

          查看答案和解析>>

          (2013•文昌模擬)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)
          構(gòu)成等邊三角形.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A1
          (ⅰ)求證:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo);
          (ⅱ)求△OA1B面積的取值范圍.

          查看答案和解析>>

          (08年上虞市質(zhì)檢一文)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物

          的焦點(diǎn),離心率等于 

          (I)求橢圓C的標(biāo)準(zhǔn)方程;

          (II)過橢圓C的右焦點(diǎn)作直線l交橢圓CA、B兩點(diǎn),交y軸于M點(diǎn),若為定值.

          查看答案和解析>>

          (08年合肥市質(zhì)檢一文)(12分)

          已知橢圓C的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且過、

          (1)求橢圓C的方程;

          (2)設(shè)過的直線與C交于兩個(gè)不同點(diǎn)M、N,求的取值范圍

          查看答案和解析>>

           

          一、選擇題

          1―12  CBDBA  ACCAD  BA

          二、填空題

          13.    14.   15.(理)   (文)16.②④

          三、解答題

          17.解(1)設(shè)向量的夾角

          …………………………………………2分

          當(dāng)

          向量的夾角為;…………………………4分

          當(dāng)

          向量的夾角為;……………………6分

          (2)|對(duì)任意的恒成立,

          ,

          對(duì)任意的恒成立。

          恒成立……………………8分

          所以…………………………10分

          解得:

          故所求實(shí)數(shù)的取值范圍是………………12分

          18.(理)解:(1)的取值為1,3。

          …………………………1分

          …………………………3分

          的分布列為

          1

          3

          P

           

          …………………………5分

          ………………………………6分

          (2)當(dāng)S8=2時(shí),即前8分鐘出現(xiàn)“紅燈”5次和“綠燈”3次,有已知 若第一、三分鐘出現(xiàn)“紅燈”,則其余六分鐘可出現(xiàn)“紅燈”3次………………8分

          若第一、二分鐘出現(xiàn)“紅燈”,第三分鐘出現(xiàn)“綠燈”,則其后五分鐘可出現(xiàn)“紅燈”3次…………………………10分

          故此時(shí)的概率為……………………12分

          (文)解:(1)若第一個(gè)路口為紅燈,則第二個(gè)路口為綠燈的概率為

          ;…………………………2分

          若第一個(gè)路口為綠燈,則第二個(gè)路口為綠燈的概率為…………4分

          ∴經(jīng)過第二個(gè)路口時(shí),遇到綠燈的概率是…………6分

          (2)若第一個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為

          ;…………………………8分

          若第二個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為:

          ………………………………10分

          若第三個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為:

          …………………………11分

          ∴經(jīng)過三個(gè)路口,出現(xiàn)一次紅燈,兩次綠燈的概率是………………12分

          19.(理)解:(1)求滿足條件①的a的取值范圍,

          函數(shù)的定義域?yàn)?sub>取任意實(shí)數(shù)時(shí),

          …………………………2分

          解得:a<1…………………………3分

          求滿足條件②的a的取值范圍

          設(shè)……………………4分

          可得,

          說明:當(dāng)

          又當(dāng)

          ∴對(duì)任意的實(shí)數(shù)x,恒有…………………………6分

          要使得x取任意實(shí)數(shù)時(shí),不等式恒成立,

          須且只須…………………………7分

          由①②可得,同時(shí)滿足條件(i)、(ii)的實(shí)數(shù)a的取值范圍為:

          …………………………8分

          (2)

          ……………………10分

          ∴不等式的解集是:

          …………………………12分

          (文)解:(1)…………4分

          (2)解法一  ………………6分

          因?yàn)?sub>,所以……………………00分

          解得:………………12分

          解法二:當(dāng)x=0時(shí),恒成立;………………5分

          當(dāng)x>0時(shí),原式或化為,………………9分

          因?yàn)?sub>時(shí)取等號(hào))………………11分

            1. 20.解法一:(1)連結(jié)AC,交BD于0,

              則O為AC的中點(diǎn),連結(jié)EO。

              ∵PA//平面BDE,平面PAC平面BDE=OE,

              ∴PA//OE…………………………2分

              ∴點(diǎn)E是PC的中點(diǎn)!3分

              (2)∵PD⊥底面ABCD,且DC底面ABCD,

              ∴PD⊥DC,△PDC是等腰直角三角形,……………………4分

              而DE是斜邊PC的中線,

              ∴DE⊥PC,  ①

              又由PD⊥平面ABCD得,PD⊥BC。…………………………6分

              ∵底面ABCD是正方形,CD⊥BC,

              ∴BC⊥平面PDC,

              而DE平面PDC,

              ∴BC⊥DE   ② ……………………7分

              由①和②推得DE⊥平面PBC,而PB平面PBC

              ∴DE⊥PB,又DF⊥PB且DEDF=D,

              所以PB⊥平面EFD,…………………………8分

              (3)由(2)知,PB⊥EF,已知PB⊥DF,故∠EFD是二面角C―PB―D的平面角,

              ………………9分

              由(2)知,DF⊥EF,PD⊥DB。

              設(shè)正方形ABCD的邊長為a,則PD=DC=a,BD=

              ……………………10分

              在Rt△EFD中,

              所以,二面角C―PB―D的大小為……………………12分

               

              解法二:(1)同解法一……………………3分

              (2)如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),

              設(shè)DC=a,依題意得

              P(0,0,a),B(a,a,0),C(0,a,0   ),

              E(0, ),A(a,0,0),D(0,0,0),

              ………………4分

              …………………………6分

              由已知DF⊥PB,且DFDE=D,

              所以PB⊥平面EFD!8分

              (3)由(2)得

              設(shè)平面PBC的法向量為n=(x,y,z),

              m為平面PBD的法向量,由

              平面PBD

              又因?yàn)槎娼荂―PB―D為銳角,所以其大小為……………………12分

              21.解:設(shè)

              因?yàn)閮蓽?zhǔn)線與x軸的交點(diǎn)分別為

               ……………………1分

              由題意知

              ………………………………3分

              則點(diǎn)N的坐標(biāo)為N(),

              即N………………………………4分

              所以………………5分

              ………………………………6分

                     當(dāng)x≠0時(shí),代入,=得:=……………………8分

                     所以,

                     即                                                               …………………10分

                     當(dāng)x=0時(shí),點(diǎn)P的坐標(biāo)為P(0,),

                     點(diǎn)M的坐標(biāo)滿足條件:=

                     點(diǎn)M的坐標(biāo)滿足條件:=

                     顯然推出與已知雙曲線中≠0矛盾。

                     所以P點(diǎn)的軌跡方程為.(x≠0,y≠0)      ……………………12分

              22.解:

                 (1)由………2分

                     所以,

              即所求數(shù)列{an}的通項(xiàng)公式為………………4分

                 (2)若n為奇數(shù),則…………5分

                     =……………………7分

                     =4-3                                                                             …………………9分

                     若n為偶數(shù),則………………10分

                     =            …………………12分

                     =4-4                                                                               …………………14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>