題目列表(包括答案和解析)
平面直角坐標系內的向量都可以用一有序實數(shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點這就是《數(shù)學
2》中已經得到的斜率公式.上述推導過程比《數(shù)學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:(1)
過點(2)
向量(A,B)與直線(3)
設直線那么,
(4)
點有三個命題:①垂直于同一個平面的兩條直線平行;②過平面α的一條斜線l有且僅有一個平面與α垂直;③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直。其中正確命題的個數(shù)為( )
A.0 B.1 C.2 D.3
在平面直角坐標系中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點是橢圓
在第一象限上的任一點,連接
,過
點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設直線
的斜率分別為
,
,試證明
為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作,設
交
于點
,
證明:當點在橢圓上移動時,點
在某定直線上.
一、填空題(本大題滿分48分,每小題4分,共12小題)
1.; 2.
; 3.
; 4.
; 5.
;
6.; 7.
; 8.
; 9.
; 10.
;
11.; 12.
.
二、選擇題(本大題滿分16分,每小題4分,共4小題)
13.C; 14.A; 15.B; 16.C;
三、解答題(本大題滿分86分,本大題共有6題)
17.(1);
(2);
18.1號至4號正四棱柱形容器是體積依次為。
∵ ,
,
∴ 存在必勝方案,即選擇3號和4號容器。
19.(1)∵ 由正弦定理,,∴
,
。
∵ , ∴
,即
。∴
。
(2)∵ ,
∴ 。
20.(1)設放水分鐘內水箱中的水量為
升
依題意得;
分鐘時,水箱的水量
升, 放水后
分鐘水箱內水量接近最少;
(2)該淋浴器一次有個人連續(xù)洗浴, 于是,
,
所以,一次可最多連續(xù)供7人洗浴。
21.(1)由及
,∴
時
成等比數(shù)列。
(2)因,由(1)知,
,故
。
(3)設存在,使得
成等差數(shù)列,則
,
即因
,所以
,
∴不存在中的連續(xù)三項使得它們可以構成等差數(shù)列。
22.(1)解:設為函數(shù)
圖像的一個對稱點,則
對于
恒成立.即
對于
恒成立,
由
,故
圖像的一個對稱點為
.
(2)解:假設是函數(shù)
(
的圖像的一個對稱點,
則(
對于
恒成立,
即對于
恒成立,因為
,所以
不
恒成立,
即函數(shù)(
的圖像無對稱點.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com