日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. :點(diǎn)P與點(diǎn)F(2.0)的距離比它到直線+4=0的距離小2.所以點(diǎn)P與點(diǎn)F(2.0)的距離與它到直線+2=0的距離相等. ---- 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          (2007•浦東新區(qū)二模)已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
          (1)求拋物線C的方程.
          (2)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中點(diǎn),過M作平行于x軸的直線交拋物線C于點(diǎn)D,得到△ABD;再分別過弦AD、BD的中點(diǎn)作平行于x軸的直線依次交拋物線C于點(diǎn)E,F(xiàn),得到△ADE和△BDF;按此方法繼續(xù)下去.
          解決下列問題:
          ①求證:a2=
          16(1-kb)k2
          ;
          ②計(jì)算△ABD的面積S△ABD;
          ③根據(jù)△ABD的面積S△ABD的計(jì)算結(jié)果,寫出△ADE,△BDF的面積;請(qǐng)?jiān)O(shè)計(jì)一種求拋物線C與線段AB所圍成封閉圖形面積的方法,并求出此封閉圖形的面積.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案