日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 易知在上為減函數(shù).-9分 查看更多

           

          題目列表(包括答案和解析)

          已知

          (1)求函數(shù)上的最小值

          (2)對一切的恒成立,求實(shí)數(shù)a的取值范圍

          (3)證明對一切,都有成立

          【解析】第一問中利用

          當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

          第二問中,,則設(shè),

          ,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立, 

          第三問中問題等價(jià)于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切,都有成立

          解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),

                           …………4分

          (2),則設(shè)

          ,單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立,                                             …………9分

          (3)問題等價(jià)于證明,

          由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切,都有成立

           

          查看答案和解析>>


          同步練習(xí)冊答案