日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(I)令.得. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)向量.

          (Ⅰ)求;

          (Ⅱ)若函數(shù),求的最小值、最大值.

          【解析】第一問中,利用向量的坐標(biāo)表示,表示出數(shù)量積公式可得

          第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103361401546097_ST.files/image003.png">,即換元法

          得到最值。

          解:(I)

          (II)由(I)得:

          .

          時(shí),

           

          查看答案和解析>>

          給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

          解:(i)由余弦定理可得,

          ,

          ,

          ,

          是直角三角形.

          (ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

          是等腰三角形.

          綜上可知,是等腰直角三角形.

          請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果.           .

           

          查看答案和解析>>

          中,滿足,邊上的一點(diǎn).

          (Ⅰ)若,求向量與向量夾角的正弦值;

          (Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

          (Ⅲ)若的最小值。

          【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

          =,得,又,則為所求

          第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時(shí),則= 

          (2)當(dāng)時(shí),則=

          第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">;

          所以于是

          從而

          運(yùn)用三角函數(shù)求解。

          (Ⅰ)解:設(shè)向量與向量的夾角為,則

          =,得,又,則為所求……………2

          (Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時(shí),則=;-2分

          (2)當(dāng)時(shí),則=;--2分

          (Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

          所以于是

          從而---2

          ==

          =…………………………………2

          ,,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時(shí),

           

          查看答案和解析>>

          小明用下面的方法求出方程的解,請(qǐng)你仿照他的方法求出下面方程的解為         

          方程

          換元法得新方程

          解新方程

          檢驗(yàn)

          求原方程的解

          t=2

          t =2 > 0

          所以x=4

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案