日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分,本小題的計算結(jié)果可以使用近似值.保留3位小數(shù)] 上海市普陀區(qū)2008學年度第二學期高三年級質(zhì)量調(diào)研 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
          2

          (1)求異面直線PC與AD所成角的大。
          (2)若平面ABCD內(nèi)有一經(jīng)過點C的曲線E,該曲線上的任一動點Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
          (3)在平面ABCD內(nèi),設(shè)點Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點,其中G為曲線E和DC的交點.以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點.當Q點在曲線段GC上運動時,試提出一個研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
          (說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計算結(jié)果可以使用近似值,保留3位小數(shù))

          查看答案和解析>>

          已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為-
          1
          4

          (1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
          (2)設(shè)過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為(1,
          1
          2
          )
          ,試求△MAB面積的最大值,并求此時直線AB的斜率kAB
          (3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個特例),試提出一個猜想或設(shè)計一個問題,嘗試研究解決.
          [說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評分].

          查看答案和解析>>

          如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
          (1)求異面直線PC與AD所成角的大。
          (2)若平面ABCD內(nèi)有一經(jīng)過點C的曲線E,該曲線上的任一動點Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
          (3)在平面ABCD內(nèi),設(shè)點Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點,其中G為曲線E和DC的交點.以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點.當Q點在曲線段GC上運動時,試提出一個研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
          (說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計算結(jié)果可以使用近似值,保留3位小數(shù))

          查看答案和解析>>

          已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為
          (1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
          (2)設(shè)過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
          (3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個特例),試提出一個猜想或設(shè)計一個問題,嘗試研究解決.
          [說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評分].

          查看答案和解析>>

          (本小題滿分14分)在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設(shè).

          (I)若,,求方程在區(qū)間內(nèi)的解集;

          (II)若點是曲線上的動點.當時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

          (III)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.【說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.】

           

          查看答案和解析>>

          一、填空題(每題5分,理科總分55分、文科總分60分):

          1. ;      2. 理:2;文:;      3. 理:1.885;文:2;

          4. 理:;文:1.885;   5. 理:;文:4;   6. 理:;文:;

          7. 理:;文:;     8. 理:;文:6;    9. 理:;文:;

          10. 理:1; 文:;    11. 理:;文:;     12. 文:

          二、選擇題(每題4分,總分16分):

          題號

          理12;文13

          理13;文14

          理:14;文:15

          理15;文:16

          答案

          A

          C

          B

          C

           

          三、解答題:

          16.(理,滿分12分)

          解:因為拋物線的焦點的坐標為,設(shè)、

          由條件,則直線的方程為,

          代入拋物線方程,可得,則.

          于是,.

           

          …2

           

           

          …4

           

          …8

           

           

          …12

          17.(文,滿分12分)

          解:因為,所以由條件可得,.

          即數(shù)列是公比的等比數(shù)列.

          ,

          所以,.

           

           

           

          …4

           

          …6

           

           

          …8

           

          …12

          (理)17.(文)18. (滿分14分)

          解:因為

          所以,

          ,

          又由,即

          時,;當時,.

          所以,集合.

           

           

           

          …3

           

           

          …7

           

           

           

          …11

           

           

           

           

           

           

          …14

          18.(理,滿分15分,第1小題6分,第2小題9分)

          解:(1)當時,

           

          ,所以.

          (2)證:由數(shù)學歸納法

          (i)當時,易知,為奇數(shù);

          (ii)假設(shè)當時,,其中為奇數(shù);

          則當時,

                   

          所以,又、,所以是偶數(shù),

          而由歸納假設(shè)知是奇數(shù),故也是奇數(shù).

          綜上(i)、(ii)可知,的值一定是奇數(shù).

          證法二:因為

          為奇數(shù)時,

          則當時,是奇數(shù);當時,

          因為其中中必能被2整除,所以為偶數(shù),

          于是,必為奇數(shù);

          為偶數(shù)時,

          其中均能被2整除,于是必為奇數(shù).

          綜上可知,各項均為奇數(shù).

           

           

          …3

           

           

           

           

           

           

          …6

           

           

           

           

          …8

           

           

           

           

          …10

           

           

           

          …14

           

          …15

           

           

           

           

           

           

           

           

          …10

           

           

           

           

          …14

           

          …15

          19. (文,滿分14分)

          解:如圖,設(shè)中點為,聯(lián)結(jié).

          由題意,,,所以為等邊三角形,

          ,且.

          ,

          所以.

          而圓錐體的底面圓面積為,

          所以圓錐體體積.

           

           

           

           

          …3

           

           

           

          …8

           

          …10

           

          …14

          (理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)

          解:(1)由題意,當之間的距離為1米時,應位于上方,

          且此時邊上的高為0.5米.

          又因為米,可得米.

          所以,平方米,

          即三角通風窗的通風面積為平方米.

          (2)1如圖(1)所示,當在矩形區(qū)域滑動,即時,

          的面積;

          2如圖(2)所示,當在半圓形區(qū)域滑動,即時,

          ,故可得的面積

           

          ;

          綜合可得:

          (3)1在矩形區(qū)域滑動時,在區(qū)間上單調(diào)遞減,

          則有

          2在半圓形區(qū)域滑動時,

          等號成立,.

          因而當(米)時,每個三角通風窗得到最大通風面積,最大面積為(平方米).

           

           

           

           

          …2

           

           

           

           

          …4

           

           

           

           

           

           

          …6

           

           

           

           

           

           

           

           

           

           

           

           

           

          …9

           

           

           

           

           

          …10

           

           

           

           

           

          …12

           

           

           

           

           

           

          …15

           

           

           

          …16

          21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)

          解:(1)設(shè)右焦點坐標為).

          因為雙曲線C為等軸雙曲線,所以其漸近線必為,

          由對稱性可知,右焦點到兩條漸近線距離相等,且.

          于是可知,為等腰直角三角形,則由,

          又由等軸雙曲線中,.

          即,等軸雙曲線的方程為.

          (2)設(shè)、為雙曲線直線的兩個交點.

          因為,直線的方向向量為,直線的方程為

          .

          代入雙曲線的方程,可得,

          于是有

                    .

          (3)假設(shè)存在定點,使為常數(shù),其中,為直線與雙曲線的兩個交點的坐標.

             ①當直線軸不垂直時,設(shè)直線的方程為

          代入,可得.

             由題意可知,,則有

          于是,

          要使是與無關(guān)的常數(shù),當且僅當,此時.

           ②當直線軸垂直時,可得點,,

           若,亦為常數(shù).

          綜上可知,在軸上存在定點,使為常數(shù).

           

           

           

           

           

           

          …3

           

           

           

          …5

           

           

           

           

           

           

          …7

           

           

           

          …9

           

           

           

           

           

          …11

           

           

           

           

           

           

           

           

          …13

           

           

           

           

           

           

           

           

           

           

           

          …16

           

           

          …17

           

          …18

           

          20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)

          解:(1)解法一:由題意,四邊形是直角梯形,且,

          所成的角即為.

          因為,又平面,

          所以平面,則有.

              因為,,

          所以,則

          即異面直線所成角的大小為.

          解法二:如圖,以為原點,直線軸、直線軸、直線軸,

          建立空間直角坐標系.

          于是有,則有,又

          則異面直線所成角滿足,

              所以,異面直線

          同步練習冊答案