日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 24. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)

          (1)證明:

          (2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

          (3)設(shè)數(shù)列滿足:,設(shè)

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當(dāng)點(diǎn)軸上移動時,求動點(diǎn)的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設(shè)函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實(shí)根,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,;

          (3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記

          (I)求數(shù)列的通項(xiàng)公式;

          (II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

          (III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

           

          一、選擇:

          1―5AADBA  6―10DCBCB  11―12DA

          二、填空

          13.2   14.(1)(3)  15.

          16.4  17.14  18.

          三、解答:

          19.解:(1)

                

             (2)

                

                

          20.證明:(1)由三視圖可知,平面平面ABCD,

                 設(shè)BC中點(diǎn)為E,連結(jié)AE、PE

                

                

                 ,PB=PC

                

                

                

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          //

          //

            1. //

                    

              四邊形CHFD為平行四邊形,CH//DF

                    

                     又

                     平面PBC

                    

                     ,DF平面PAD

                     平面PAB

              21.解:設(shè)

                    

                    

                     對成立,

                     依題有成立

                     由于成立

                        ①

                     由于成立

                       

                     恒成立

                        ②

                     綜上由①、②得

               

               

              22.解:設(shè)列車從各站出發(fā)時郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

                 (1)

                     在第k站出發(fā)時,前面放上的郵袋

                     而從第二站起,每站放下的郵袋

                     故

                    

                     即從第k站出發(fā)時,共有郵袋

                 (2)

                     當(dāng)n為偶數(shù)時,

                     當(dāng)n為奇數(shù)時,

              23.解:①

                     上為增函數(shù)

                     ②增函數(shù)

                    

                    

                    

                    

                    

                     同理可證

                    

                    

              24.解:(1)假設(shè)存在滿足題意

                     則

                    

                     均成立

                    

                    

                     成立

                     滿足題意

                 (2)

                    

                    

                    

                    

                     當(dāng)n=1時,

                    

                     成立

                     假設(shè)成立

                     成立

                     則

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                     即得成立

                     綜上,由數(shù)學(xué)歸納法可知