日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 一列火車自A城駛往B城.沿途有n個車站.車上有一節(jié)郵政車廂.每停靠一站便要卸下前面各站發(fā)往該站的郵袋各一個.同時又要裝上該站發(fā)往后面各站的郵袋各一個. 試求:(1)列車從第k站出發(fā)時.郵政車廂內(nèi)共有多少郵袋? (2)第幾站的郵袋數(shù)最多.最多是多少? 查看更多

           

          題目列表(包括答案和解析)

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
          OT
          =
          M1M
          +
          N1N
          ,記點T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)
          ,
          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          (07年福建卷理)(本小題滿分12分)在中,,

          (Ⅰ)求角的大;

          (Ⅱ)若最大邊的邊長為,求最小邊的邊長.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

          (I)求f (x)的最小值h(t);

          (II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          (07年福建卷文)(本小題滿分12分)

          如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

          (I)求證:AB1⊥平面A1BD;

          (II)求二面角A-A1D-B的大小.

          查看答案和解析>>

           

          一、選擇:

          1―5AADBA  6―10DCBCB  11―12DA

          二、填空

          13.2   14.(1)(3)  15.

          16.4  17.14  18.

          三、解答:

          19.解:(1)

                

             (2)

                

                

          20.證明:(1)由三視圖可知,平面平面ABCD,

                 設(shè)BC中點為E,連結(jié)AE、PE

                

                

                 ,PB=PC

                

                

                

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          //

          //

            1. //

                    

              四邊形CHFD為平行四邊形,CH//DF

                    

                     又

                     平面PBC

                    

                     ,DF平面PAD

                     平面PAB

              21.解:設(shè)

                    

                    

                     對成立,

                     依題有成立

                     由于成立

                        ①

                     由于成立

                       

                     恒成立

                        ②

                     綜上由①、②得

               

               

              22.解:設(shè)列車從各站出發(fā)時郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

                 (1)

                     在第k站出發(fā)時,前面放上的郵袋

                     而從第二站起,每站放下的郵袋

                     故

                    

                     即從第k站出發(fā)時,共有郵袋

                 (2)

                     當(dāng)n為偶數(shù)時,

                     當(dāng)n為奇數(shù)時,

              23.解:①

                     上為增函數(shù)

                     ②增函數(shù)

                    

                    

                    

                    

                    

                     同理可證

                    

                    

              24.解:(1)假設(shè)存在滿足題意

                     則

                    

                     均成立

                    

                    

                     成立

                     滿足題意

                 (2)

                    

                    

                    

                    

                     當(dāng)n=1時,

                    

                     成立

                     假設(shè)成立

                     成立

                     則

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                     即得成立

                     綜上,由數(shù)學(xué)歸納法可知