日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解法一: (Ⅰ)由已知l2⊥MN, l2⊥l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN為AC在平面ABN內(nèi)的射影. ∴AC⊥NB (Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC為正三角形.∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC內(nèi)的射影H是正三角形ABC的中心,連結(jié)BH,∠NBH為NB與平面ABC所成的角. 在Rt△NHB中,cos∠NBH= = = .解法二: 如圖,建立空間直角坐標(biāo)系M-xyz.令MN=1, 則有A,N,(Ⅰ)∵M(jìn)N是 l1.l2的公垂線, l1⊥l2, ∴l(xiāng)2⊥平面ABN. l2平行于z軸. 故可設(shè)C, =+0=0 ∴AC⊥NB. 查看更多

           

          題目列表(包括答案和解析)

          已知圓心為C的圓經(jīng)過點A(-3,0)和點B(1,0)兩點,且圓心C在直線y=x+1上.
          (1)求圓C的標(biāo)準(zhǔn)方程.
          (2)已知線段MN的端點M的坐標(biāo)(3,4),另一端點N在圓C上運動,求線段MN的中點G的軌跡方程;
          (3)是否存在斜率為1的直線l,使l被圓C截得的弦PQ,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點?若存在求出直線l的方程,若不存在說明理由.

          查看答案和解析>>

          精英家教網(wǎng)某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息解答下列問題:
          (1)由已知圖象上的三點坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
          (2)求截止到第幾月末公司累積利潤可達(dá)到30萬元;
          (3)求第八個月該公司所獲利潤是多少萬元?

          查看答案和解析>>

          研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
          解:由cx2-bx+a>0且x≠0,所以
          (c×2-bx+a)
          x2
          >0得a(
          1
          x
          2-
          b
          x
          +c>0,設(shè)
          1
          x
          =y,得ay2-by+c>0,由已知得:1<y<2,即1<
          1
          x
          <2,∴
          1
          2
          <x<1所以不等式cx2-bx+a>0的解集是(
          1
          2
          ,1).
          參考上述解法,解決如下問題:已知關(guān)于x的不等式
          b
          (x+a)
          +
          (x+c)
          (x+d)
          <0的解集是:(-3,-1)∪(2,4),則不等式
          bx
          (ax-1)
          +
          (cx-1)
          (dx-1)
          <0的解集是
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)

          查看答案和解析>>

          學(xué)生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
          其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
          cos(α-β)=
          1
          2
          又α,β均銳角
          -
          π
          2
          <α-β<
          π
          2

          α-β=±
          π
          3

          請判斷上述解答是否正確?若不正確請予以指正.

          查看答案和解析>>

          仔細(xì)閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案