題目列表(包括答案和解析)
如圖9-37,兩條異面直線AB、CD與三個平行平面a 、b 、g 分別相交于A、E、B,及C、F、D,又AD、BC與平面b 的交點為H、G.求證:EHFG為平行四邊形.
設是兩個不共線的非零向量.
(1)若=
,
=
,
=
,求證:A,B,D三點共線;
(2)試求實數k的值,使向量和
共線. (本小題滿分13分)
【解析】第一問利用=(
)+(
)+
=
=
得到共線問題。
第二問,由向量和
共線可知
存在實數,使得
=
(
)
=
,結合平面向量基本定理得到參數的值。
解:(1)∵=(
)+(
)+
==
……………3分
∴ ……………5分
又∵∴A,B,D三點共線 ……………7分
(2)由向量和
共線可知
存在實數,使得
=
(
)
……………9分
∴=
……………10分
又∵不共線
∴ ……………12分
解得
三棱柱中,側棱與底面垂直,
,
,
分別是
,
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結,
,∵M,N是AB,
的中點∴MN//
.
又∵平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴
.∴
.連結
,
.
∴,又N中
的中點,∴
.
∵與
相交于點C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
.得到結論。
⑴連結,
,∵M,N是AB,
的中點∴MN//
.
又∵平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,
∴四邊形是正方形.∴
.
∴.連結
,
.
∴,又N中
的中點,∴
.
∵與
相交于點C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com