日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)若.求數列的通項公式, 查看更多

           

          題目列表(包括答案和解析)

          (13分)已知數列滿足.

          (Ⅰ)若,求數列的通項公式;

          (Ⅱ)若,設,求數列的前項和;

          (Ⅲ)是否存在實數,使數列滿足不等式恒成立?若存在,求出的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          設數列的通項公式為。數列定義如下:對于正整數m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數列的前2m項和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

          查看答案和解析>>

          設數列的通項公式為。數列定義如下:對于正整數m,是使得不等式成立的所有n中的最小值。

             (1)若,求b3;

             (2)若,求數列的前2m項和公式;

             (3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

          查看答案和解析>>

          設數列的通項公式為。數列定義如下:對于正整數m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數列的前2m項和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

          查看答案和解析>>

          設數列的通項公式為。數列定義如下:對于正整數m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數列的前2m項和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

          查看答案和解析>>

          一、選擇題:

          1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

          二、填空題:

          13、    14、  15、對任意使   16、2    17、

          18、    19、   20、8      21、     22、40    23、   

          24、4       25、    26、

          三、解答題:

          27解:(1)由,得

          ,

          ,

          ,

          于是,

          ,即

          (2)∵角是一個三角形的最小內角,∴0<,,

          ,則(當且僅當時取=),

          故函數的值域為

          28證明:(1)同理,

          又∵       ∴平面. 

          (2)由(1)有平面

          又∵平面,    ∴平面平面

          (3)連接AG并延長交CD于H,連接EH,則,

          在AE上取點F使得,則,易知GF平面CDE.

          29解:(1),                     

          ,,                         

          。   

          (2)∵,

          ∴當且僅當,即時,有最大值。

          ,∴取時,(元),

          此時,(元)。答:第3天或第17天銷售收入最高,

          此時應將單價定為7元為好

          30解:(1)設M

          ∵點M在MA上∴  ①

          同理可得

          由①②知AB的方程為

          易知右焦點F()滿足③式,故AB恒過橢圓C的右焦點F(

          (2)把AB的方程

          又M到AB的距離

          ∴△ABM的面積

          31解:(Ⅰ)  

          所以函數上是單調減函數.

          (Ⅱ) 證明:據題意x1<x2<x3,

          由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

          即ㄓ是鈍角三角形

          (Ⅲ)假設ㄓ為等腰三角形,則只能是

           

            ①         

          而事實上,    ②

          由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形.

          32解:(Ⅰ)

              

          故數列為等比數列,公比為3.           

          (Ⅱ)

                           

          所以數列是以為首項,公差為 loga3的等差數列.

                                     

          =1+3,且

                                     

              

          (Ⅲ)

                

          假設第項后有

                即第項后,于是原命題等價于

                

            故數列項起滿足.    

           


          同步練習冊答案