日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以 .由此解得: 查看更多

           

          題目列表(包括答案和解析)

          5.A解析:因為函數(shù)有0,1,2三個零點,可設函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

          因此b=-3a,又因為當x>2時f(x)>0所以a>0,因此b<0

          若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k=4.013,那么有          把握認為兩個變量有關系.

          查看答案和解析>>

          5.A解析:因為函數(shù)有0,1,2三個零點,可設函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
          因此b=-3a,又因為當x>2時f(x)>0所以a>0,因此b<0
          若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k=4.013,那么有         把握認為兩個變量有關系.

          查看答案和解析>>

          解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉化為判斷方程解的個數(shù)問題,近而轉化成判斷交點個數(shù)問題,在坐標系中畫出圖形


          由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

          袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

          查看答案和解析>>

          閱讀不等式5x≥4x+1的解法:
          解:由5x≥4x+1,兩邊同除以5x可得1≥(
          4
          5
          )x+(
          1
          5
          )x

          由于0<
          1
          5
          4
          5
          <1
          ,顯然函數(shù)f(x)=(
          4
          5
          x+(
          1
          5
          x在R上為單調減函數(shù),
          f(1)=
          4
          5
          +
          1
          5
          =1
          ,故當x>1時,有f(x)=(
          4
          5
          x+(
          1
          5
          x<f(x)=1
          所以不等式的解集為{x|x≥1}.
          利用解此不等式的方法解決以下問題:
          (1)解不等式:9x>5x+4x;
          (2)證明:方程5x+12x=13x有唯一解,并求出該解.

          查看答案和解析>>

          (2012•鹽城一模)在綜合實踐活動中,因制作一個工藝品的需要,某小組設計了如圖所示的一個門(該圖為軸對稱圖形),其中矩形ABCD的三邊AB、BC、CD由長6分米的材料彎折而成,BC邊的長為2t分米(1≤t≤
          3
          2
          );曲線AOD擬從以下兩種曲線中選擇一種:曲線C1是一段余弦曲線(在如圖所示的平面直角坐標系中,其解析式為y=cosx-1),此時記門的最高點O到BC邊的距離為h1(t);曲線C2是一段拋物線,其焦點到準線的距離為
          9
          8
          ,此時記門的最高點O到BC邊的距離為h2(t).
          (1)試分別求出函數(shù)h1(t)、h2(t)的表達式;
          (2)要使得點O到BC邊的距離最大,應選用哪一種曲線?此時,最大值是多少?

          查看答案和解析>>


          同步練習冊答案