日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一個(gè)盒中放有除顏色不同外.其余完全相同的黑球和白球.其中黑球2個(gè).白球3個(gè), (1)從盒中同時(shí)摸出兩個(gè)球.求兩球顏色恰好相同的概率, (2)從盒中摸出一個(gè)球.放回后再摸出一個(gè)球.求兩球顏色恰好不同的概率. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)一個(gè)盒子中裝有5張卡片,每張卡片上寫有一個(gè)數(shù)字,數(shù)字分別是1、2、3、4、5,現(xiàn)從盒子中隨機(jī)抽取卡片。

          (1)從盒中依次抽取兩次卡片,每次抽取一張,取出的卡片不放回,求兩次取到的卡片的數(shù)字既不全是奇數(shù),也不全是偶數(shù)的概率;

          (2)若從盒子中有放回的抽取3次卡片,每次抽取一張,求恰有兩次取到卡片的數(shù)字為偶數(shù)的概率;

          (3)從盒子中依次抽取卡片,每次抽取一張,取出的卡片不放回,當(dāng)放回記有奇數(shù)的卡片即停止抽取,否則繼續(xù)抽取卡片,求抽取次數(shù)X的分布列和期望。

           

          查看答案和解析>>

          (本小題滿分12分)一個(gè)盒子中裝有5張卡片,每張卡片上寫有一個(gè)數(shù)字,數(shù)字分別是1、2、3、4、5,現(xiàn)從盒子中隨機(jī)抽取卡片。
          (1)從盒中依次抽取兩次卡片,每次抽取一張,取出的卡片不放回,求兩次取到的卡片的數(shù)字既不全是奇數(shù),也不全是偶數(shù)的概率;
          (2)若從盒子中有放回的抽取3次卡片,每次抽取一張,求恰有兩次取到卡片的數(shù)字為偶數(shù)的概率;
          (3)從盒子中依次抽取卡片,每次抽取一張,取出的卡片不放回,當(dāng)放回記有奇數(shù)的卡片即停止抽取,否則繼續(xù)抽取卡片,求抽取次數(shù)X的分布列和期望。

          查看答案和解析>>

          (本小題滿分12分)一個(gè)盒子中裝有5張卡片,每張卡片上寫有一個(gè)數(shù)字,數(shù)字分別是1、2、3、4、5,現(xiàn)從盒子中隨機(jī)抽取卡片。
          (1)從盒中依次抽取兩次卡片,每次抽取一張,取出的卡片不放回,求兩次取到的卡片的數(shù)字既不全是奇數(shù),也不全是偶數(shù)的概率;
          (2)若從盒子中有放回的抽取3次卡片,每次抽取一張,求恰有兩次取到卡片的數(shù)字為偶數(shù)的概率;
          (3)從盒子中依次抽取卡片,每次抽取一張,取出的卡片不放回,當(dāng)放回記有奇數(shù)的卡片即停止抽取,否則繼續(xù)抽取卡片,求抽取次數(shù)X的分布列和期望。

          查看答案和解析>>

          (本小題滿分12分)
          一個(gè)盒子中裝有6張卡片,上面分別寫著如下6道極限題:
          ;②;③;④
          ;⑥
          (1)現(xiàn)從盒子中任取兩張卡片,求至少有一張卡片上題目極限不存在的概率;
          (2)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有極取不存在的題的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望。

          查看答案和解析>>

          (本小題滿分12分)

          一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)定義域?yàn)?i>R的函數(shù):

            (1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是偶函數(shù)的概率;

            (2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有奇函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行. 求抽取次數(shù)的分布列、數(shù)學(xué)期望和方差.

          查看答案和解析>>

          一、選擇題:

                 1. C  2. C  3. B  4.C  5. D  6. D  7. C 8. D  9. B  10. A  11. C  12. C

          二、填空題:

                 13.  85,1.6    14.  800   15.    16.

          三、解答題:

          17.解: (1)………………………1分

                

                         化簡(jiǎn)得…………………………3分

                         

                 (2))

                         

                       令Z),函數(shù)f(α)的對(duì)稱軸方程為

                        Z).………………………………………………………12分

          18. 解:(1)從盒中同時(shí)摸出兩個(gè)球,有種可能情況,…………2分

                 摸出兩球顏色恰好相同即兩個(gè)黑球或兩個(gè)白球,有1+種情況,……4分

                 故所求概率是………………………………………………………………6分

                 (2)從盒中摸出一個(gè)球,放回后再摸出一個(gè)球,共有5×5=25種情況,……8分

                 若兩球顏色不同,即“先黑后白”或“先白后黑”,共有2×3+3×2=12種可能情況,故所求概率是………………………………………………………………………12分

                 (本題也可一一列出基本事件空間后求解)

          19.解:(1)an+1+an=3n-54, an+2+an+1=3(n+1)-54.

                 兩式相減得an+2-an=3(n∈N*),

                 ∴數(shù)列a1,a3,a5,……, a2, a4, a6, …都是公差為3的等差數(shù)列.……………………1分

                 a1=-27, a1+a2==-51, a2=-24。采用疊加法可得,

                 當(dāng)n為奇數(shù)時(shí),an=;…………………………3分

                 當(dāng)n為偶數(shù)時(shí),an=……………………………5分

                 ∴an=………………………………6分

                 (2)因?yàn)閚為偶數(shù),所以

                        Sn=(a1+a2)+(a3+a4)+……+(an-1+an)…………………………8分

                        =(3×1-54)+(3×3?54)+……+[3(n?1)?54]

                        =…………………………………………10分

                        若n為偶數(shù),當(dāng)n=18時(shí),Sn取到最小值-243.……………………12分

          20. (1)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                                 又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.……2分

                                 又BC平面PCB,∴平面PAB⊥平面PCB.……4分

                 (2)證明:∵PA⊥底面ABCD,∴PA⊥AD.

                                 又PC⊥AD,∴AD⊥平面PAC,∴AC⊥AD.

                                 在梯形ABCD中,由AB⊥BC,AB=BC,得∠BAC=,

                                 ∴∠DCA=∠BAC=.

                                 又AC⊥AD,故△DAC為等腰直角三角形。

                                 ∴DC=2AB,  

                                 ……………………8分

          (3)連結(jié)BD,交AC于點(diǎn)M,連結(jié)EM,則

                          在△BPD中,∴PD∥EM.

                          又PD平面EAC,EM平面EAC,

                          ∴PD∥平面EAC.……………………(12分)

          21.解:(1)設(shè)直線AB的方程為y=k(x+1),

                 將y=k(x+1)代入x2+3y2=5, 消去y整理得(3k2+1)x2+6k2x+3k2-5=0.………2分

                 △=36k4-4(3k2+1)(3k2-5)>0恒成立,

                 設(shè)A(x1,y1), B(x2,y2), 則x1+x2=,………………………………4分

                 由線段AB中點(diǎn)的橫坐標(biāo)是,

                 得解得k=±.……………………5分

                 所以直線AB的方程為……………………6分

                 (2)假設(shè)在x軸上存在點(diǎn)M(m, 0),使為常數(shù).

                 由(1)知x­1+x2=

              所以

              =

                 =……………………8分

                 將①代入上式,整理得

              ∴

              ∵

                 綜上,在x軸上存在定點(diǎn)M,使為常數(shù)……………………12分

          22.解:(1)f(x)的定義域?yàn)?0,+∞),f′(x)=,

          令f′(x)=0,得x=e1-a.……………………3分

          當(dāng)x∈(0, e1-a­­­­)時(shí),f′(x)>0,f(x)在(0, e1-a­­­­)內(nèi)是單調(diào)遞增,當(dāng)x∈(e1-a­,+∞)時(shí),f′(x)<0,f(x)在(e1-a,+∞)內(nèi)是單調(diào)遞減.…………………………6分

          ∴f(x)在x=e1-a處取得極大值f(e1-a)=ea-1.………………8分

          (2)∵a>0, ∴e1-a<e2,∴[f(x)]max=f(e1-a)=ea-1,………………10分

          ∴f(x)的圖象g(x)=1的圖象在(0,e2]上有公共點(diǎn),等價(jià)于ea-1≥1,……………12分

          兩邊以e底取對(duì)數(shù)可解得a≥1,故a的取值范圍是[1,+∞)……………………14分

           

           


          同步練習(xí)冊(cè)答案