日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析].又. 查看更多

           

          題目列表(包括答案和解析)

          【解析】本小題考查直線方程的求法。畫草圖,由對(duì)稱性可猜想。

          事實(shí)上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點(diǎn)F滿足此方程,又原點(diǎn)O也滿足此方程,故為所求的直線OF的方程。

          答案。

          查看答案和解析>>

          【答案】

          【解析】設(shè),有幾何意義知的最小值為, 又因?yàn)榇嬖趯?shí)數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:,所以a的取值范圍是.故答案為:

          查看答案和解析>>

          已知中,,.設(shè),記.

          (1)   求的解析式及定義域;

          (2)設(shè),是否存在實(shí)數(shù),使函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)利用(1)如圖,在中,由,,

          可得,

          又AC=2,故由正弦定理得

           

          (2)中

          可得.顯然,,則

          1當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">m+1=3/2,n=1/2

          2當(dāng)m<0,不滿足的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;

          因而存在實(shí)數(shù)m=1/2的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.

           

          查看答案和解析>>

          已知向量,且,A為銳角,求:

          (1)角A的大;

          (2)求函數(shù)的單調(diào)遞增區(qū)間和值域.

          【解析】第一問(wèn)中利用,解得   又A為銳角                 

                

          第二問(wèn)中,

           解得單調(diào)遞增區(qū)間為

          解:(1)        ……………………3分

             又A為銳角                 

                                        ……………………5分

          (2)

                                                            ……………………8分

            由 解得單調(diào)遞增區(qū)間為

                                                            ……………………10分

           

           

          查看答案和解析>>

          已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

          【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

           故

          ,又由題設(shè)    從而

          第二問(wèn)中,

          當(dāng)時(shí),時(shí)

          時(shí), 

          時(shí),

          分別討論得到結(jié)論。

          由題設(shè)可知

           故

          ,又由題設(shè)   

          從而……………………4分

          (2)

          當(dāng)時(shí),時(shí)……………………6分

          時(shí),……8分

          時(shí),

           ……………………10分

          綜上可得 

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案