日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即當(dāng)時(shí).也成立. 查看更多

           

          題目列表(包括答案和解析)

           已知命題及其證明:

          (1)當(dāng)時(shí),左邊=1,右邊=所以等式成立;

          (2)假設(shè)時(shí)等式成立,即成立,

          則當(dāng)時(shí),,所以時(shí)等式也成立。

          由(1)(2)知,對(duì)任意的正整數(shù)n等式都成立。      

          經(jīng)判斷以上評(píng)述

          A.命題、推理都正確      B命題不正確、推理正確 

          C.命題正確、推理不正確      D命題、推理都不正確

           

          查看答案和解析>>

          教材中是用“AB且BA,則A=B”來定義的,實(shí)際上也可以說當(dāng)集合A與B的元素完全相同時(shí),則A________B.教材中的定義實(shí)際上給出了一種證明兩個(gè)集合相等的方法,即欲證A=B,只需證AB與BA都成立即可.

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時(shí),,故. …………5分

          所以.                 …………6分

          (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點(diǎn),

          當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          已知,(其中

          ⑴求;

          ⑵試比較的大小,并說明理由.

          【解析】第一問中取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得

          ,則得到結(jié)論

          第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

          解:⑴取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得,

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          當(dāng)時(shí),;                              …………6分

          猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

          由上述過程可知,時(shí)結(jié)論成立,

          假設(shè)當(dāng)時(shí)結(jié)論成立,即

          當(dāng)時(shí),

          時(shí)結(jié)論也成立,

          ∴當(dāng)時(shí),成立。                          …………11分

          綜上得,當(dāng)時(shí),

          當(dāng)時(shí),

          當(dāng)時(shí), 

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè),

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案