日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 令0 得sin .因?yàn)?所以=. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿(mǎn)足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點(diǎn)為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過(guò)點(diǎn)A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          閱讀下面材料:
          根據(jù)兩角和與差的正弦公式,有:
          sin(α+β)=sinαcosβ+cosαsinβ…①
          sin(α-β)=sinαcosβ-cosαsinβ…②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
          令α+β=A,α-β=B有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得sinA+sinB=2sin
          A+B
          2
          cos
          A-B
          2

          (Ⅰ)類(lèi)比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2

          (Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿(mǎn)足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

          查看答案和解析>>

          (2012•福建模擬)閱讀下面材料:
          根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
          sin(α-β)=sinαcosβ-cosαsinβ------②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
          令α+β=A,α-β=B有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得 sinA+sinB=2sin
          A+B
          2
          cos
          A-B
          2

          (Ⅰ)類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2
          ;
          (Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿(mǎn)足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
          (提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

          查看答案和解析>>

          閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
          sin(α+β)=sinαcosβ+cosαsinβ------①
          sin(α-β)=sinαcosβ-cosαsinβ------②
          由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
          令α+β=A,α-β=β 有α=
          A+B
          2
          ,β=
          A-B
          2

          代入③得 sinA+subB=2sin
          A+B
          2
          cos
          A-B
          2

          (Ⅰ) 類(lèi)比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
          A+B
          2
          sin
          A-B
          2
          ;
          (Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

          查看答案和解析>>

          閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
          -1±
          5
          4
          ,∵sinα=sin18°∈(0,1),∴sinα=
          -1+
          5
          4
          (sinα=
          -1-
          5
          4
          <0舍去),即sin18°=
          -1+
          5
          4
          .試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
          4
          4

          查看答案和解析>>


          同步練習(xí)冊(cè)答案