日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 同理可得: .這就證明了=. 查看更多

           

          題目列表(包括答案和解析)

           [番茄花園1] 本題共有2個小題,第一個小題滿分5分,第2個小題滿分8分。

          已知數(shù)列的前項和為,且,

          (1)證明:是等比數(shù)列;

          (2)求數(shù)列的通項公式,并求出n為何值時,取得最小值,并說明理由。

          同理可得,當(dāng)n≤15時,數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時,Sn取得最小值.

           


           [番茄花園1]20.

          查看答案和解析>>

          已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過點(diǎn),∴,即,

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率,

          ∴直線的方程為:,又

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          當(dāng)且僅當(dāng),即時取等號.

          故圓面積的最小值

           

          查看答案和解析>>

          ,為常數(shù),離心率為的雙曲線上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。

          【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          第二問中,,,

          故直線的方程為,即,

          所以,同理可得:

          借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

          (Ⅱ)設(shè),,,

          故直線的方程為,即,

          所以,同理可得:,

          ,是方程的兩個不同的根,所以

          由已知易得,即

           

          查看答案和解析>>

          某市將建一個制藥廠,但該廠投產(chǎn)后預(yù)計每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護(hù)環(huán)境,市政府決定支持該廠貸款引進(jìn)廢氣處理設(shè)備來減少廢氣的排放:該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體.
          經(jīng)測算,制藥廠每天利用設(shè)備處理廢氣的綜合成本y(元)與廢氣處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=
          40x+1200,    0<x<40
          2x2-100x+5000,40≤x≤80
          ,且每處理1噸工業(yè)廢氣可得價值為80元的某種化工產(chǎn)品并將之利潤全部用來補(bǔ)貼廢氣處理.
          (1)若該制藥廠每天廢氣處理量計劃定為20噸時,那么工廠需要每天投入的廢氣處理資金為多少元?
          (2)若該制藥廠每天廢氣處理量計劃定為x噸,且工廠不用投入廢氣處理資金就能完成計劃的處理量,求x的取值范圍;
          (3)若該制藥廠每天廢氣處理量計劃定為x(40≤x≤80)噸,且市政府決定為處理每噸廢氣至少補(bǔ)貼制藥廠a元以確保該廠完成計劃的處理量總是不用投入廢氣處理資金,求a的值.

          查看答案和解析>>

          精英家教網(wǎng)已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;
          (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;
          (Ⅱ)求切線長|PA|的最小值;
          (Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動點(diǎn),求|MP|+|PQ|的最小值及此時點(diǎn)P的坐標(biāo).

          查看答案和解析>>


          同步練習(xí)冊答案