日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當在上變化時.的變化情況如下表 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域為

          ,得

          當x變化時,,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當時,取,有,故時不合題意.當時,令,即

          ,得

          ①當時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當時,,對于,,故上單調(diào)遞增.因此當取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

          時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,

           

          查看答案和解析>>

          已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設,求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當時,,.結(jié)合表格和導數(shù)的知識判定單調(diào)性和極值,進而得到最值。

          第二問中,∵,,      

          ∴原不等式等價于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當時,,

          上變化時,的變化情況如下表:

           

           

          1/e

          時,,

          (Ⅱ)∵,,      

          ∴原不等式等價于:,

          , 亦即

          ∴對于任意的,原不等式恒成立,等價于恒成立,

          ∵對于任意的時, (當且僅當時取等號).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調(diào)遞增!最大值為

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>


          同步練習冊答案