日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在由三條直線x-y+2=0,x+y-4=0,x+2y+1=0圍成的三角形內(nèi)求一點(diǎn).使其到三直線的距離相等. 查看更多

           

          題目列表(包括答案和解析)

          如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線y=(m+5)x2m+1交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
          (1)求雙曲線的解析式;
          (2)求B點(diǎn)的坐標(biāo);
          (3)若S△AOB=2,求A點(diǎn)的坐標(biāo);
          (4)在(3)的條件下,在x軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線y=(m+5)x2m+1交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
          (1)求雙曲線的解析式;
          (2)求B點(diǎn)的坐標(biāo);
          (3)若S△AOB=2,求A點(diǎn)的坐標(biāo);
          (4)在(3)的條件下,在x軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個(gè)陰影區(qū)域的面積之和為S(t).
          (1)求函數(shù)S(t)的解析式;
          (2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
          (3)定義函數(shù)h(x)=S(x),x∈R若過點(diǎn)A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          (2013•懷化三模)設(shè)函數(shù)f(x)=
          1
          3
          mx3+(4+m)x2,g(x)=aln(x-1)
          ,其中a≠0.
          (Ⅰ)若函數(shù)y=g(x)圖象恒過定點(diǎn)P,且點(diǎn)P關(guān)于直線x=
          3
          2
          的對稱點(diǎn)在y=f(x)的圖象上,求m的值;
          (Ⅱ)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x+1),討論F(x)的單調(diào)性;
          (Ⅲ)在(Ⅰ)的條件下,設(shè)G(x)=
          f(x),x≤2
          g(x),x>2
          ,曲線y=G(x)上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

          查看答案和解析>>

          已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個(gè)陰影區(qū)域的面積之和為S(t).
          (1)求函數(shù)S(t)的解析式;
          (2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
          (3)定義函數(shù)h(x)=S(x),x∈R若過點(diǎn)A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案