日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009屆四川省雅安中學(xué)高三4月月考試題

          數(shù)學(xué) (理科)

          一、選擇題:(本大題共12個小題,每小題5分,滿分60分,在每小題給出的四個選項中只有一個選項是符合題目要求的,請將答案涂在機讀卡上.)

          1.設(shè)集合,若,則a的值為

          A.4              B.-2                 C.4或-2          D.-4或2

          試題詳情

          2.不等式|x|?(1-2x)>0的解集是

          試題詳情

          A.      B.      C.         D.

          試題詳情

          3.設(shè)是兩個不共線的向量,向量與-(-2)共線的充要條件是λ等于

          試題詳情

          A.0             B.-1                 C.-2              D.

          試題詳情

          4.等比數(shù)列是遞增數(shù)列,其前n項的積為Tn,若T13=4T9,則a7?a16=

          A.2              B.±2                 C.4                D.±4 

          試題詳情

          5.下面四個命題:

          ①過空間一點有且僅有一條直線與兩條異面直線都相交;

          ②與三條兩兩異面的直線都相交的直線有無數(shù)條;

          ③直線a、b異面,過a有且只有一個平面與b平行;

          ④直線ab異面,過a有且只有一個平面與b垂直.

          其中正確命題的序號是

          A.①②        B.②③              C.③④           D.②④

          試題詳情

          6.在△ABC中,sinA=,cosB=,則cosC=

          試題詳情

          A.            B.                C.        D.

          試題詳情

          7.已知,則使(1-aix)2<1  (=1,2,3)都成立的x的取值范圍是

          試題詳情

          A.         B.         C.          D.

          試題詳情

          8.要從10名女生和5名男生中選取6名學(xué)生組成課外興趣小組,如果按性別分層抽樣,則能組成課外興趣小組的概率是

          試題詳情

          A.       B.       C.            D.  

          試題詳情

          9.雙曲線的一條漸近線與直線2x+y+t=0垂直,則雙曲線的離心率為

          試題詳情

          A.             B.            C.              D.  

          試題詳情

          10.某地區(qū)對一次高三診斷性考試進行抽樣分析:考生成績符合正態(tài)分布N,且“語、數(shù)、外、綜”總分平均分為450分,標準差為120.由以往各年的高考情況可知該地區(qū)一本上線率約為20%,可劃出該地區(qū)這次診斷考試的模擬一本分數(shù)線約為(參考數(shù)據(jù):

          A.450            B.535             C.570              D.552

          試題詳情

          11.若直線過點M(cosθ,sinθ),則

          試題詳情

          A.     B.      C.      D.

          試題詳情

          12.十進制“逢10進一”,二進制“逢2進一”, 十六進制“逢16進一”.十進制用0,1,2……9這十個數(shù)字記數(shù);二進制只需0,1兩個數(shù)字記數(shù);“十六進制”則需用0,1,2,3……9, A,B,C,D,E、F(從小到大)這十六個數(shù)字或表示數(shù)的字母記數(shù).如:二進制數(shù)(110101)2化為十進制數(shù)是,那么十進制數(shù)2009等于

          A.(11111011001)2    B.(11000110101)2      C.(7D9)16        D.(8C9)16

          試題詳情

          二、填空題:(每小題4分,共16分)

          13.在        

          試題詳情

          14.已知是直線上的動點是圓的兩條切線,是切點,是圓心,那么四邊形面積的最小值時,弦          ;

          試題詳情

          15.  已知,為原點,點的坐標滿足,則的最大值是     ___,此時點的坐標是     _____.

          試題詳情

          16.下面有五個命題:
          ①函數(shù)y=sin4x-cos4x的最小正周期是.②終邊在y軸上的角的集合是{a|a=}.
          ③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點.
          ④把函數(shù)
          ⑤函數(shù)

          所有正確命題的序號是               .(把你認為正確命題的序號都填上)

          試題詳情

          三.解答題:

          17.(12分)已知△ABC的面積S滿足3≤S≤3的夾角為

          試題詳情

             (Ⅰ)求的取值范圍;

          試題詳情

             (Ⅱ)求的最小值。

          試題詳情

          18.(本小題滿分12分)

          某高校自愿獻血的50位學(xué)生的血型分布的情況如下表:

           

          血型

          A

          B

          AB

          O

          人數(shù)

          20

          10

          5

          15

          (Ⅰ)從這50位學(xué)生中隨機選出2人,求這2人血型都為A型的概率;

          (Ⅱ)從這50位學(xué)生中隨機選出2人,求這2人血型相同的概率;

          試題詳情

          (Ⅲ)現(xiàn)有一位血型為A型的病人需要輸血,要從血型為A,O的學(xué)生中隨機選出2人準備獻血,記選出A型血的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

          試題詳情

          19.(本小題滿分12分)四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點滿足

          (I)求證:PA⊥平面ABCD;  (II)求二面角E-AC-D的大;

          試題詳情

          (III)在線段BC上是否存在點F使得PF∥面EAC?若存在,確定F的位置;若不存在,請說明理由。

           

           

           

           

           

           

           

           

           

          試題詳情

          20、橢圓的中心在原點,它的短軸長為,相應(yīng)的焦點)的準線軸相交于,

          (1)求橢圓的方程;

          試題詳情

          (2)過橢圓的左焦點作一條與兩坐標軸都不垂直的直線,交橢圓于兩點,若點軸上,且使的一條角平分線,則稱點為橢圓的“左特征點”,求橢圓的左特征點;

          試題詳情

          (3)根據(jù)(2)中結(jié)論,猜測橢圓左特征點位置.

          試題詳情

          21、設(shè)是正項數(shù)列的前項和,且

          試題詳情

          (1)求數(shù)列的通項公式;

          試題詳情

          (2)是否存在等比數(shù)列,使對一切正整數(shù)都成立?并證明你的結(jié)論.

          試題詳情

          (3)設(shè),且數(shù)列的前項和為,試比較的大。

          試題詳情

          22、已知函數(shù)為實常數(shù))

          試題詳情

          (1)當時,求最小值;

          試題詳情

          (2)若是單調(diào)函數(shù),求的取值范圍;

          試題詳情

          (3)設(shè)各項為正的無窮數(shù)列滿足,證明:

          雅安中學(xué)高2009屆4月月考

          數(shù)學(xué)(理)答案

          1―5CBDAB   6―10ABABD  11―12 DA

          試題詳情

          二、填空題:

          13. 答案:

          試題詳情

          14.答案

          試題詳情

           解:過圓心C(1,1)作直線

          的垂線,垂足為P,這時

          試題詳情

          四邊形面積的最小值為,四邊形

          試題詳情

          試題詳情

          試題詳情

          終邊在y軸上的角的集合是

          試題詳情

          函數(shù)y=sinx的圖象和函數(shù)y=x的圖象只有一個交點,因此(3)不正確.

          試題詳情

          試題詳情

          試題詳情

          16.答案:①④

          試題詳情

          17.解(Ⅰ)由題意知

          試題詳情

          試題詳情

          ……………………3分

          試題詳情

          試題詳情

          ……………………4分

          試題詳情

          的夾角……………………6分

          試題詳情

          (Ⅱ)

          試題詳情

          ……………………9分

          試題詳情

          試題詳情

          有最小值。

          試題詳情

          的最小值是……………………12分

          試題詳情

          18. 解:(Ⅰ)記“這2人血型都為A型”為事件A,那么

          試題詳情

          即這2人血型都為A型的概率是.                 ┅┅┅┅4分

          試題詳情

          (Ⅱ)記“這2人血型相同”為事件B,那么

          試題詳情

          所以這2人血型相同的概率是.                         ┅┅┅┅8分

          試題詳情

          (Ⅲ)隨機變量可能取的值為0,1,2.且,

          試題詳情

          試題詳情

          所以的分布列是

          試題詳情

          0

          1

          2

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          的數(shù)學(xué)期望為E=0×+1×+2×=.┅┅┅┅12分

          試題詳情

          19.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          試題詳情

          ⑵在AD上取一點O使AO=AD,連接E,O,

           

          則EO∥PA,∴EO⊥面ABCD 過點O做

          OH⊥AC交AC于H點,連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                      6分

          試題詳情

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          試題詳情

          ∴HO=AOsin45°=,∴tan∠EHO=,

          試題詳情

          ∴二面角E-AC-D等于arctan                                         8分

          ⑶當F為BC中點時,PF∥面EAC,理由如下:

          試題詳情

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          試題詳情

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當F為BC中點時,PF∥面EAC                                            12分

          試題詳情

          20、解:(1)由條件知,可設(shè)橢圓方程為

          試題詳情

              又 橢圓方程為   …………4分

          試題詳情

              (2)設(shè)左特征點為,左焦點為,可設(shè)直線的方程為

          試題詳情

              由,消去

          試題詳情

              又設(shè),則

          試題詳情

                    ①                         

          試題詳情

                         、                                …………6分

          試題詳情

              因為的角平分線,所以,即

          試題詳情

                         ③

          試題詳情

              將代入③化簡,得         ④

          試題詳情

              再將①②代入④得       

          試題詳情

               即左特征點為                      …………10分

          試題詳情

              (3)橢圓的左準線與軸的交點為,故猜測橢圓的左特征點為左準線與軸的交點.                                   …………12分

          試題詳情

          21、解:(1)

          試題詳情

              ,相減并整理為

          試題詳情

              又由于,則,故是等差數(shù)列.

          試題詳情

              ,故    ……3分

          試題詳情

              (2)當時,

          試題詳情

          可解得,,猜想使

          試題詳情

          成立              …………5分

          試題詳情

          下面證明恒成立

          試題詳情

          試題詳情

            ②  ②-①可得

          試題詳情

                  …………8分

          試題詳情

          (3)

          試題詳情

          試題詳情

               ,故                 …………12分

          試題詳情

          22、解(1),當時,,時,

          試題詳情

              故                                    …………3分

          試題詳情

          (2),顯然時,符合要求;

          試題詳情

              當時,令

          試題詳情

              故此時上只能是單調(diào)遞減的.

          試題詳情

              故解得,可知

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

                                        …………8分

           

                 

           

           

           

           

           

          試題詳情

          (3)反證法:不妨設(shè),由(2)知

          試題詳情

              故   故

          試題詳情

             

          試題詳情

             

          試題詳情

             

          試題詳情

              又由(2)知當時,,故,這與上面結(jié)論矛盾.

          試題詳情

              故同理              …………14分

           

           

           

           

           

          試題詳情


          同步練習(xí)冊答案