日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,且a≠0),當x∈[-3,1]時,有f(x)≤0;當x∈(-∞,-3)∪(1,+∞)時,有(x)>0,且f(2)=5.
          (1)求f(x)的解析式;
          (2)當x∈[1,3]時,函數(shù)f(x)的圖象始終在函數(shù)g(x)=mx-7的圖象上方,求實數(shù)m的取值范圍.
          分析:(1)由題意知,-3,1是二次方程ax2+bx+c=0的兩根,從而可求得f(x)的解析式;
          (2)x2+2x-3>mx-7在x∈[1,3]時恒成立,可轉化為:m<x+
          4
          x
          +2在x∈[1,3]時恒成立,應用基本不等式即可.
          解答:解:(1)由題意知,-3,1是二次方程ax2+bx+c=0的兩根.
          可設f(x)=a(x-1)(x+3)(a≠0)…4
          ∵f(2)=5,∴f(2)=5a=5,即a=1,
          ∴f(x)=x2+2x-3…6
          (2)由題意知,f(x)>g(x)在x∈[1,3]時恒成立,即x2+2x-3>mx-7在x∈[1,3]時恒成立,…10
          故m<x+
          4
          x
          +2在x∈[1,3]時恒成立,
          而x+
          4
          x
          +2≥2
          4
          +2=6.(當且僅當x=2時等號成立.)
          故m<6…13
          點評:本題考查基本不等式,難點在于對題目條件反映的“-3,1是二次方程ax2+bx+c=0的兩根”的理解,著重考查化歸思想,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經過原點,且滿足f(2)=0,求實數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
          (Ⅰ)求f(x)的表達式;
          (Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

          查看答案和解析>>

          同步練習冊答案