日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分18分,第(1)小題4分,第(2)小題7分,第(3)小題7分)

          對于兩個定義域相同的函數(shù)、,如果存在實數(shù)、使得,則稱函數(shù)是由“基函數(shù)、”生成的.

          (1)若+2生成一個偶函數(shù),求的值;

          (2)若=2+3-1由函數(shù),∈R且≠0生成,求+2的取值范圍;

          (3)如果給定實系數(shù)基函數(shù),≠0,問:任意一個一次函數(shù)是否都可以由它們生成?請給出你的結(jié)論并說明理由.

          (1)0(2)-∞,-,+∞(3)若二元一次方程組的系數(shù)行列式=0,,則一定存在一次函數(shù)不能由基函數(shù)≠0生成.

          ≠0,任意一個一次函數(shù)可由基函數(shù),≠0生成


          解析:

          (1)由,+2+2,

          是偶函數(shù),∴=0,=-

          ,故=0;(4分)

          (2)=2+3-1=

          ,,由≠0,得≠3,(7分)

          +2-∞,-,+∞.(11分)

          (3)若一次函數(shù)≠0可由基函數(shù)生成,[來源:學(xué).科.網(wǎng)]

          則存在實數(shù)使得,

          于是.(13分)

          若二元一次方程組的系數(shù)行列式=0,即=0,則一定存在一次函數(shù)不能由基函數(shù)≠0生成.(16分)

          ≠0,則對任意的,方程組必有唯一解,

          此時,任意一個一次函數(shù)可由基函數(shù),≠0生成.(18分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

          在平行四邊形中,已知過點的直線與線段分別相交于點。若

          (1)求證:的關(guān)系為;

          (2)設(shè),定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標(biāo);若不存在,請說明理由。

          (3)設(shè)函數(shù)上偶函數(shù),當(dāng),又函數(shù)圖象關(guān)于直線對稱, 當(dāng)方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆上海市崇明中學(xué)高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題

          (本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
          對于數(shù)列,如果存在一個正整數(shù),使得對任意的)都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當(dāng)是周期為的周期數(shù)列,當(dāng)是周期為的周期數(shù)列。
          (1)設(shè)數(shù)列滿足),不同時為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
          (2)設(shè)數(shù)列的前項和為,且
          ①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
          ②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
          (3)設(shè)數(shù)列滿足),,,數(shù)列的前項和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在,   說明理由;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題

          (本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

          對于數(shù)列,如果存在一個正整數(shù),使得對任意的)都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當(dāng)是周期為的周期數(shù)列,當(dāng)是周期為的周期數(shù)列。

              (1)設(shè)數(shù)列滿足),不同時為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;

              (2)設(shè)數(shù)列的前項和為,且

          ①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;

          ②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;

              (3)設(shè)數(shù)列滿足),,,數(shù)列 的前項和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在,    說明理由;

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題

            (本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)

          已知函數(shù),其中.

          (1)當(dāng)時,設(shè),,求的解析式及定義域;

          (2)當(dāng),時,求的最小值;

          (3)設(shè),當(dāng)時,對任意恒成立,求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

          (本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)

          設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.

          (1)若,求證:該數(shù)列是“封閉數(shù)列”;

          (2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?

          (3)設(shè)是數(shù)列的前項和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項公式,若不存在,說明理由.

           

          查看答案和解析>>

          同步練習(xí)冊答案