日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在六面體ABCD-A1B1C1D1中,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
          (Ⅰ)求證:A1C1與AC共面,B1D1與BD共面;
          (Ⅱ)求證:平面A1ACC1⊥平面B1BDD1;
          (Ⅲ)求二面角A-BB1-C的大。ㄓ梅慈呛瘮(shù)值圾示).
          分析:(Ⅰ)根據(jù)D1D⊥平面A1B1C1D1,D1D⊥平面ABCD,則D1D⊥DA,D1D⊥DC,而平面A1B1C1D1∥平面ABCD,則C1D1∥CD,D1A1∥DA,設(shè)E,F(xiàn)分別為DA,DC的中點(diǎn),連接EF,A1E,C1F,易證A1C1∥AC,從而A1C1與AC共面,過點(diǎn)B1作B1O⊥平面ABCD于點(diǎn)O,連接OE,OF,則點(diǎn)O在BD上,從而D1B1與DB共面.
          (Ⅱ)欲證平面A1ACC1⊥平面B1BDD1,根據(jù)面面垂直的判定定理可知在平面A1ACC1內(nèi)一直線與平面B1BDD1垂直,因D1D⊥平面ABCD,則D1D⊥AC,又BD⊥AC,D1D與BD是平面B1BDD1內(nèi)的兩條相交直線,則AC⊥平面B1BDD1,又平面A1ACC1過AC,滿足定理所需條件;
          (Ⅲ)直線DB是直線B1B在平面ABCD上的射影則AC⊥DB,根據(jù)三垂線定理,有AC⊥B1B.過點(diǎn)A在平面ABB1A1內(nèi)作AM⊥B1B于M,連接MC,MO,
          則B1B⊥平面AMC,∠AMC是二面角A-B1B-C的一個(gè)平面角,在三角形AMC中求出此角即可.
          解答:解:
          (Ⅰ)證明:∵D1D⊥平面A1B1C1D1,D1D⊥平面ABCD.精英家教網(wǎng)
          ∴D1D⊥DA,D1D⊥DC,平面A1B1C1D1∥平面ABCD.
          于是C1D1∥CD,D1A1∥DA.
          設(shè)E,F(xiàn)分別為DA,DC的中點(diǎn),連接EF,A1E,C1F,
          有A1E∥D1D,C1F∥D1D,DE=1,DF=1.∴A1E∥C1F,
          于是A1C1∥EF.由DE=DF=1,得EF∥AC,
          故A1C1∥AC,A1C1與AC共面.
          過點(diǎn)B1作B1O⊥平面ABCD于點(diǎn)O,
          B1O
          .
          .
          A1E,B1O
          .
          .
          C1F
          ,連接OE,OF,
          于是OE
          .
          .
          B1A1
          ,OF
          .
          .
          B1C1
          ,∴OE=OF.
          ∵B1A1⊥A1D1,∴OE⊥AD.∵B1C1⊥C1D1,∴OF⊥CD.
          所以點(diǎn)O在BD上,故D1B1與DB共面.
          (Ⅱ)證明:∵D1D⊥平面ABCD,∴D1D⊥AC,
          又BD⊥AC(正方形的對(duì)角線互相垂直),
          D1D與BD是平面B1BDD1內(nèi)的兩條相交直線,∴AC⊥平面B1BDD1
          又平面A1ACC1過AC,∴平面A1ACC1⊥平面B1BDD1
          (Ⅲ)解:∵直線DB是直線B1B在平面ABCD上的射影,AC⊥DB,
          根據(jù)三垂線定理,有AC⊥B1B.
          過點(diǎn)A在平面ABB1A1內(nèi)作AM⊥B1B于M,連接MC,MO,
          則B1B⊥平面AMC,
          于是B1B⊥MC,B1B⊥MO,
          所以,∠AMC是二面角A-B1B-C的一個(gè)平面角.
          根據(jù)勾股定理,有A1A=
          5
          ,C1C=
          5
          ,B1B=
          6

          ∵OM⊥B1B,有OM=
          B1O?OB
          B1B
          =
          2
          3
          ,
          BM=
          2
          3
          ,AM=
          10
          3
          ,CM=
          10
          3

          cos∠AMC=
          AM2+CM2-AC2
          2AM?CM
          =-
          1
          5
          ,
          ∠AMC=π-arccos
          1
          5
          ,
          二面角A-BB1-C的大小為π-arccos
          1
          5
          點(diǎn)評(píng):本小題主要考查直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、二面角及其平面角等有關(guān)知識(shí),考查空間想象能力和思維能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.
          (1)求證:平面BEF⊥平面DEFG;
          (2)求證:BF∥平面ACGD;
          (3)求三棱錐A-BCF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
          (Ⅰ)求證:BF∥平面ACGD;
          (Ⅱ)求五面體ABCDEFG的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.
          (1)求證:平面BEF⊥平面DEFG;
          (2)求證:BD∥平面ACGD;
          (3)求三棱錐A-BCF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AC=EF=1,AB=AD=DE=DG=2.
          (1)求證:BF∥平面ACGD;
          (2)求二面角D-CG-F的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
          (1)求證:BF∥平面ACGD;
          (2)求二面角D-CG-F的余弦值;
          (3)求D到平面BCGF的距離.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案