日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:

          .如:,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.

          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.

          (2)若數(shù)列{an}滿足a1=2,,

          ,是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p·8n+q總成立?若存在,求出p和q;若不存在,說明理由.

          (3)若常數(shù)t滿足t≠0且t>-1,,求

          答案:
          解析:

            

            ∴是周期為3的數(shù)列  (6分)

            假設(shè)存在實常數(shù)p和q,對于任意的n∈N*,bn=p·8n+q總成立,則:

            

            

            即存在實常數(shù),對于任意的總成立  (10分)

            (3)

              (14分)

            ∴  (18分)


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•奉賢區(qū)模擬)我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:A=
          .
          x\~(a1)(a2)(a3)…(an-1)(an)
          .如:A=
          .
          2\~(-1)(3)(-2)(1)
          ,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
          (2)若數(shù)列{an}滿足a1=2,ak+1=
          1
          1-ak
          ,k∈N*
          ,bn=
          .
          2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
          (n∈N*),是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
          (3)若常數(shù)t滿足t≠0且t>-1,dn=
          .
          t\~(
          C
          1
          n
          )(
          C
          2
          n
          )(
          C
          3
          n
          )…(
          C
          n-1
          n
          )(
          C
          n
          n
          )
          ,求
          lim
          n→∞
          dn
          dn+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:數(shù)學(xué)公式.如:數(shù)學(xué)公式,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
          (2)若數(shù)列{an}滿足a1=2,數(shù)學(xué)公式,數(shù)學(xué)公式(n∈N*),是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
          (3)若常數(shù)t滿足t≠0且t>-1,數(shù)學(xué)公式,求數(shù)學(xué)公式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:奉賢區(qū)模擬 題型:解答題

          我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:A=
          .
          x\~(a1)(a2)(a3)…(an-1)(an)
          .如:A=
          .
          2\~(-1)(3)(-2)(1)
          ,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
          (2)若數(shù)列{an}滿足a1=2,ak+1=
          1
          1-ak
          ,k∈N*
          ,bn=
          .
          2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
          (n∈N*),是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
          (3)若常數(shù)t滿足t≠0且t>-1,dn=
          .
          t\~(
          C1n
          )(
          C2n
          )(
          C3n
          )…(
          Cn-1n
          )(
          Cnn
          )
          ,求
          lim
          n→∞
          dn
          dn+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年上海市奉賢區(qū)高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:.如:,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
          (1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
          (2)若數(shù)列{an}滿足a1=2,,(n∈N*),是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
          (3)若常數(shù)t滿足t≠0且t>-1,,求

          查看答案和解析>>

          同步練習(xí)冊答案