日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在(0,+∞)上的函數(shù)f (x),對(duì)于任意的m,n∈(0,+∞),都有f=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.(Ⅰ)計(jì)算f(1);(Ⅱ)證明f (x)在(0,+∞)上是減函數(shù);(Ⅲ)當(dāng)時(shí),解不等式f(x2-3x)>-1.
          【答案】分析:(Ⅰ)用賦值法求f(1)的值,因?yàn)槎x在(0,+∞)上的函數(shù)f (x)對(duì)于任意的m,n∈(0,+∞),滿足f(m•n)=f(m)+f(n),所以只需令m=n=1,即可求出f(1)的值.
          (Ⅱ)用函數(shù)單調(diào)性的定義證明,步驟是,先設(shè)所給區(qū)間上任意兩個(gè)自變量x1,x2,且x1<x2,再用作差法比較f(x1),f(x2)的大小,比較時(shí),借助f(m•n)=f(m)+f(n),把x2表示即可.
          (Ⅲ)先根據(jù)以及f(m•n)=f(m)+f(n)求出f(4)=-1,把不等式f(x2-3x)>-1化為f(x2-3x)>f(4),再利用(II)中判斷的函數(shù)的單調(diào)性解不等式即可.
          解答:解:(Ⅰ)∵定義在(0,+∞)上的函數(shù)f (x)對(duì)于任意的m,n∈(0,+∞),滿足f(m•n)=f(m)+f(n),
          ∴f(1)=f(1×1)=f(1)+f(1).∴f(1)=0
          證明:(II)設(shè)0<x1<x2,∵f(m•n)=f(m)+f(n)即f(m•n)-f(m)=f(n)
          =
          因?yàn)?<x1<x2,則,而當(dāng)x>1時(shí),f(x)<0,從而f(x2)<f(x1
          于是f(x)在(0,+∞)上是減函數(shù).
          解:(Ⅲ)因?yàn)閒(4)=f(2)+f(2)=-1,所以f(x2-3x)>f(4),
          因?yàn)閒(x)在(0,+∞)上是減函數(shù),所以0<x2-3x<4,
          解得-1<x<0或3<x<4,
          故所求不等式的解集為{x|-1<x<0或3<x<4}.
          點(diǎn)評(píng):本題主要考查了賦值法求抽象函數(shù)的函數(shù)值,抽象函數(shù)的單調(diào)性的證明,以及借助函數(shù)單調(diào)性解不等式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在(0,1)上的函數(shù)f(x),對(duì)任意的m,n∈(1,+∞)且m<n時(shí),都有f(
          1
          n
          )-
          f(
          1
          m
          )=f(
          m-n
          1-mn
          )
          an=f(
          1
          n2+5n+5
          )
          ,n∈N*,則在數(shù)列{an}中,a1+a2+…a8=( 。
          A、f(
          1
          2
          )
          B、f(
          1
          3
          )
          C、f(
          1
          4
          )
          D、f(
          1
          5
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在(0,1)上的函數(shù),且滿足:①對(duì)任意x∈(0,1),恒有f(x)>0;②對(duì)任意x1,x2∈(0,1),恒有
          f(x1)
          f(x2)
          +
          f(1-x1)
          f(1-x2)
          ≤2
          ,則下面關(guān)于函數(shù)f(x)判斷正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•順義區(qū)二模)已知定義在區(qū)間[0,
          2
          ]上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對(duì)稱,當(dāng)x
          4
          時(shí),f(x)=cosx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          填空題
          (1)已知
          cos2x
          sin(x+
          π
          4
          )
          =
          4
          3
          ,則sin2x的值為
          1
          9
          1
          9

          (2)已知定義在區(qū)間[0,
          2
          ]
          上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對(duì)稱,當(dāng)x≥
          4
          時(shí),f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個(gè)不同的解,則實(shí)數(shù)a的取值范圍為
          (-1,-
          2
          2
          )
          (-1,-
          2
          2
          )


          (3)設(shè)向量
          a
          b
          ,
          c
          滿足
          a
          +
          b
          +
          c
          =
          0
          ,(
          a
          -
          b
          )⊥
          c
          ,
          a
          b
          ,若|
          a
          |=1
          ,則|
          a
          |2+|
          b
          |2+|
          c
          |2
          的值是
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•湖州二模)定義在(0,
          π
          2
          )上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立,則( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案