日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)設(shè)f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d是常數(shù).如果f(1)=10,f(2)=20,f(3)=30,求f(10)+f(-6)的值;
          (2)若不等式2x-1>m(x2-1)對(duì)滿足-2≤m≤2的所有m都成立,求x的取值范圍.
          (1)構(gòu)造函數(shù)g(x)=f(x)-10x,則g(1)=g(2)=g(3)=0,
          即1,2,3為方程f(x)-10x=0的三個(gè)根
          ∵方程f(x)-10x=0有四個(gè)根,
          故可設(shè)方程f(x)-10x=0的另一根為m
          則方程f(x)-10x=(x-1)(x-2)(x-3)(x-m)
          ∴f(x)=(x-1)(x-2)(x-3)(x-m)+10x
          故:f(10)+f(-6)
          =(10-1)(10-2)(10-3)(10-m)+100+(-6-1)(-6-2)(-6-3)(-6-m)-60
          =8104.
          (2)原不等式可化為(x2-1)m-(2x-1)<0,
          構(gòu)造函數(shù)f(m)=(x2-1)m-(2x-1)(-2≤m≤2),
          其圖象是一條線段.
          根據(jù)題意,只須:
          f(-2)=-2(x2-1)-(2x-1)<0
          f(2)=2(x2-1)-(2x-1)<0

          2x2+2x-3>0
          2x2-2x-1<0

          解得
          -1+
          7
          2
          <x<
          1+
          3
          2
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)f(x)=
          x
          ,g(x)=-x+a(a>0)
          (1)若F(x)=f(x)+g(x),試求F(x)的單調(diào)遞減區(qū)間;
          (2)設(shè)G(x)=
          f(x),f(x)≥g(x)
          {g(x),f(x)<g(x)
          ,試求a的值,使G(x)到直線x+y-1=0距離的最小值為
          2
          ;
          (3)若不等式|
          f(x)+a[g(x)-2a]
          f(x)
          |≤1
          對(duì)x∈[1,4]恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
          (Ⅰ)求g(x)的解析式;
          (Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
          (Ⅲ)若k=
          1
          3
          ,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
          1
          2
          ,a]
          上的值域?yàn)?span id="fygt1yk" class="MathJye">[
          1
          a
          ,1],若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)設(shè)f(x)是定義在R上奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-3,則當(dāng)x<0時(shí),f(x)表達(dá)式為
           

          (2)設(shè)f(x)是定義在R上奇函數(shù),且f(x+1)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=2x-3,則x∈(3,4)時(shí),f(x)表達(dá)式為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案