【題目】已知函數(shù)f(x)=2 sin(ax﹣
)cos(ax﹣
)+2cos2(ax﹣
)(a>0),且函數(shù)的最小正周期為
.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.
【答案】解:函數(shù)f(x)=2 sin(ax﹣
)cos(ax﹣
)+2cos2(ax﹣
)(a>0), 化簡可得:f(x)=
sin(2ax﹣
)+cos(2ax﹣
)+1
= cos2ax+sin2ax+1
=2sin(2ax+ )+1
∵函數(shù)的最小正周期為 .即T=
由T= ,可得a=2.
∴a的值為2.
故f(x)=2sin(4x+ )+1;
(Ⅱ)x∈[0, ]時(shí),4x+
∈[0,
].
當(dāng)4x+ =
時(shí),函數(shù)f(x)取得最小值為
=1-
.
當(dāng)4x+ =
時(shí),函數(shù)f(x)取得最大值為2×1+1=3
∴f(x)在[0, ]上的最大值為3,最小值為1-
.
【解析】(Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求a的值.(Ⅱ)x∈[0, ]時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì)求,可求f(x)最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別是雙曲線
的左右焦點(diǎn),過
的直線
與雙曲線的左右兩支分別交于
兩點(diǎn).若
為等邊三角形,則
的面積為( )
A. 8 B. C.
D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為
.
(1)證明:直線AB過定點(diǎn);
(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-x+c定義在區(qū)間[0,1]上,x1,x2∈
[0,1],且x1≠x2,求證:
(1)f(0)=f(1);
(2)|f(x2)-f(x1)|<|x1-x2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅、舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),其主體造型的平面圖是由兩個(gè)相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計(jì)劃在正方形MNPQ上建一花壇,造價(jià)為4 200元/m2,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)空角上鋪草坪,造價(jià)為80元/m2.
(1)設(shè)總造價(jià)為S元,AD的邊長為x m,試建立S關(guān)于x的函數(shù)解析式;
(2)計(jì)劃至少要投多少萬元才能建造這個(gè)休閑小區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)經(jīng)過點(diǎn)(2
,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等邊三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P(x,y)是橢圓E上的動(dòng)點(diǎn),M(2,0)為一定點(diǎn),求|PM|的最小值及取得最小值時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓內(nèi)接四邊形ABCD中,AB=3,AD=2,∠BCD=1200.
(1)求線段BD的長與圓的面積.
(2)求四邊形ABCD的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為
的等差數(shù)列,要得到g(x)=cos(ωx+
)的圖象,可將f(x)的圖象( )
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線E:
的左、右焦點(diǎn),P是雙曲線上一點(diǎn),
到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)
時(shí),
的面積為
,求此雙曲線的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com