日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若直線x+y=k與曲線y=
          1-x2
          恰有一個(gè)公共點(diǎn),則k的取值范圍是
          -1≤k<1或k=
          2
          -1≤k<1或k=
          2
          分析:曲線y=
          1-x2
          表示一個(gè)半圓,如圖所示.當(dāng)直線過點(diǎn)A(-1,0)時(shí),直線y=-x+k與半圓只有一個(gè)交點(diǎn);當(dāng)直線過點(diǎn)B(1,0),C(0,1)時(shí),直線y=-x+k與半圓有兩個(gè)交點(diǎn),此時(shí)k=1;當(dāng)直線位于此兩條直線之間時(shí)滿足題意.當(dāng)直線y=-x+k與半圓相切時(shí)只有一個(gè)公共點(diǎn),也滿足條件.
          解答:解:曲線y=
          1-x2
          表示一個(gè)半圓,如圖所示.
          當(dāng)直線過點(diǎn)A(-1,0)時(shí),直線y=-x+k與半圓只有一個(gè)交點(diǎn),此時(shí)k=-1;
          當(dāng)直線過點(diǎn)B(1,0),C(0,1)時(shí),直線y=-x+k與半圓有兩個(gè)交點(diǎn),此時(shí)k=1;
          當(dāng)直線y=-x+k與半圓相切時(shí)只有一個(gè)公共點(diǎn),k=
          2

          因此當(dāng)-1≤k<1時(shí),或k=
          2
          ,直線x+y=k與曲線y=
          1-x2
          恰有一個(gè)公共點(diǎn).
          故答案為-1≤k<1,或k=
          2
          點(diǎn)評:本題考查了直線與圓的相交于相切的位置關(guān)系、數(shù)形結(jié)合思想方法等基礎(chǔ)知識與基本方法,考查了推理能力和計(jì)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若直線y=k(x-4)與曲線y=
          4-x2
          有公共點(diǎn),則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖南省澧縣一中、岳陽縣一中2012屆高三11月聯(lián)考數(shù)學(xué)理科試題 題型:044

          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

          (1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

          (2)設(shè)函數(shù)F(x)滿足F(x)+x[(x)-(x)]=-3x2-(a+6)x+1.其中(x),(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(xiàn)(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

          (本小題滿分13分)(第一問8分,第二問5分)

          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

          (1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

          (2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆湖南省澧縣一中、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

          (本小題滿分13分)(第一問8分,第二問5分)
          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
          (1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
          (2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案