日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在多面體ABCD-EF中,四邊形ABCD為正方形,EF∥AB,EF⊥EA,AB=2EF,∠AED=90°,AE=ED,H為AD的中點(diǎn).
          (1)求證:EH⊥平面ABCD;
          (2)求二面角A-FC-B的大。
          分析:(1)證明線(xiàn)面垂直,只需證明EH垂直于平面ABCD內(nèi)的一條直線(xiàn),利用證明AB⊥平面AED,即可證得;
          (2)根據(jù)AC,BD,OF兩兩垂直,建立空間直角坐標(biāo)系,求出平面BCF的法向量、平面AFC的法向量,利用向量的夾角公式,即可求二面角A-FC-B的大。
          解答:精英家教網(wǎng)(1)證明:因?yàn)锳E=ED,H是AD的中點(diǎn),所以EH⊥AD
          又因?yàn)锳B∥EF,EF⊥EA,所以AB⊥EA
          又因?yàn)锳B⊥AD,所以AB⊥平面AED,
          因?yàn)镋H?平面AED,所以AB⊥EH,
          所以EH⊥平面ABCD;
          (2)解:AC,BD,OF兩兩垂直,建立如圖所示的坐標(biāo)系,設(shè)EF=1,則AB=2,B(0,
          2
          ,0),C(-
          2
          ,0,0),F(xiàn)(0,0,1)
          設(shè)平面BCF的法向量為
          n1
          =(x,y,z),
          BC
          =(-
          2
          ,-
          2
          ,0),
          CF
          =(
          2
          ,0,1)
          n1
          BC
          =0
          n1
          CF
          =0
          ,∴
          -
          2
          x-
          2
          y=0
          2
          x+z=0
          ,∴可取
          n1
          =(-1,1,
          2

          平面AFC的法向量為
          n2
          =(0,1,0)
          ∴cos<
          n1
          ,
          n2
          >=
          n1
          n2
          |
          n1
          ||
          n2
          |
          =
          1
          2
          .               
          ∵二面角A-FC-B為銳角,∴二面角A-FC-B等于
          π
          3
          點(diǎn)評(píng):本題考查線(xiàn)面垂直,考查面面角,解題的關(guān)鍵是熟練運(yùn)用線(xiàn)面垂直的判定,掌握求平面法向量的方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1,AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案