已知函數(shù)(
為常數(shù)),其圖象是曲線
.
(1)當時,求函數(shù)
的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為
,若存在唯一的實數(shù)
,使得
與
同時成立,求實數(shù)
的取值范圍;
(3)已知點為曲線
上的動點,在點
處作曲線
的切線
與曲線
交于另一點
,在點
處作曲線
的切線
,設(shè)切線
的斜率分別為
.問:是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
(1);(2)
;(3)當
時,存在常數(shù)
,使
;當
時,不存在常數(shù)
,使
.
【解析】
試題分析:(1)這是一個求函數(shù)單調(diào)遞減區(qū)間的問題,比較簡單,可以通過導(dǎo)數(shù)的符號去判斷;(2)這是一個兩方程有公共解且公共解唯一的問題,消去參數(shù)后就轉(zhuǎn)化為含有參數(shù)
的關(guān)于未知數(shù)
的三次方程有唯一解的問題,可利用三次函數(shù)的圖象判斷;(3)可設(shè)
,然后把點
的坐標和
都用
表示,再考察關(guān)于
的等式
恒成立,從而去確定常數(shù)
是否存在.
試題解析:(1)當時,
. 2分
令f ?(x)<0,解得,f(x)的單調(diào)減區(qū)間為
. 4分
(2) ,
由題意知消去
,得
有唯一解. 6分
令,則
,
以在區(qū)間
,
上是增函數(shù),在
上是減函數(shù), 8分
又,
,
故實數(shù)的取值范圍是
. 10分
(3) 設(shè),則點
處切線方程為
,
與曲線:
聯(lián)立方程組,得
,即
,所以
點的橫坐標
. 12分
由題意知,,
,
若存在常數(shù),使得
,則
,
即常數(shù),使得
,
所以常數(shù),使得
解得常數(shù)
,使得
,
. 15分
故當時,存在常數(shù)
,使
;當
時,不存在常數(shù)
,使
.16分
考點:函數(shù)與方程、導(dǎo)數(shù)的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(
為常數(shù)),其圖象是曲線
.
(1)當時,求函數(shù)
的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為
,若存在唯一的實數(shù)
,使得
與
同時成立,求實數(shù)
的取值范圍;
(3)已知點為曲線
上的動點,在點
處作曲線
的切線
與曲線
交于另一點
,在點
處作曲線
的切線
,設(shè)切線
的斜率分別為
.問:是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆浙江省寧波市八校高一上學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(
為常數(shù),且
).
(1)當時,求函數(shù)
的最小值(用
表示);
(2)是否存在不同的實數(shù)使得
,
,并且
,若存在,求出實數(shù)
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)
已知函數(shù)(
為常數(shù),
且
)的圖象過點
.
(1)求實數(shù)的值;
(2)若函數(shù),試判斷函數(shù)
的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省高二上學(xué)期段考數(shù)學(xué)卷 題型:解答題
已知函數(shù)(
為常數(shù),
),滿足
,且
有兩個相同的解。
(1)求的表達式;
(2)設(shè)數(shù)列滿足
,且
,求證:數(shù)列
是等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省高三第一次模擬考試理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù)(
為常數(shù)),直線l與函數(shù)
的圖象都相切,且l與函數(shù)
的圖象的切點的橫坐標為l.
(Ⅰ)求直線l的方程及a的值;
(Ⅱ)當k>0時,試討論方程的解的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com