日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線Ey22pxp0)的焦點(diǎn)為F,以F為圓心,3p為半徑的圓交拋物線EP,Q兩點(diǎn),以線段PF為直徑的圓經(jīng)過點(diǎn)(0,﹣1),則點(diǎn)F到直線PQ的距離為_____

          【答案】

          【解析】

          由題意設(shè)以F為圓心,3p為半徑的圓的方程與拋物線聯(lián)立求出PQ的坐標(biāo),再由以線段PF為直徑的圓經(jīng)過點(diǎn)D0,﹣1)可得0,求出p的值,進(jìn)而求出F的坐標(biāo)及直線PQ的方程,求出F到直線PQ的距離.

          由題意可得以F為圓心,3p為半徑的圓的方程為:(x2+y2=(3p2

          與拋物線方程聯(lián)立,,整理可得4x2+4px350,所以可得x,代入拋物線的方程可得y±p,

          不妨設(shè)Pp),Q,p),所以直線PQx,

          因?yàn)橐跃段PF為直徑的圓經(jīng)過點(diǎn)D0,﹣1),所以0

          即(,1,p+1)=0

          整理可得:5p24p+40,所以p,

          所以F0),直線PQ的方程為:x

          所以點(diǎn)F到直線PQ的距離為

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】考察正方體6個(gè)面的中心,甲從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,乙也從這6個(gè)點(diǎn)中任意選兩個(gè)點(diǎn)連成直線,則所得的兩條直線相互平行但不重合的概率等于( .

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SPTP的斜率之積為.

          1)求動(dòng)點(diǎn)P的軌跡E的方程;

          2)設(shè)點(diǎn)B為軌跡Ey軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡EM,N兩點(diǎn),且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Snnn+2)(nN*).

          1)求數(shù)列{an}的通項(xiàng)公式;

          2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心為,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的重直平分線與半徑相交于點(diǎn)

          1)求動(dòng)點(diǎn)的軌跡的方程;

          2)給定點(diǎn),若過點(diǎn)的直線與軌跡相交于兩點(diǎn)(均不同于點(diǎn)).證明:直線與直線的斜率之積為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某商場(chǎng)在促銷期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的出售,當(dāng)顧客在商場(chǎng)內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:

          消費(fèi)金額(元)的范圍

          獲得獎(jiǎng)券的金額(元)

          30

          60

          100

          130

          根據(jù)上述促銷方法,顧客在該商場(chǎng)購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價(jià)),試問:

          1)若購買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?

          2)對(duì)于標(biāo)價(jià)在(元)內(nèi)的商品,顧客購買標(biāo)價(jià)為多少元的商品,可得到不小于的優(yōu)惠率?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).

          1)證明: ;

          2)是否存在,使得為等差數(shù)列?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知拋物線的焦點(diǎn)為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.

          )求的方程;

          )若直線,且有且只有一個(gè)公共點(diǎn)

          )證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

          的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,橢圓上的點(diǎn)到左焦點(diǎn)的距離的最大值為.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)已知直線與橢圓交于、兩點(diǎn).在軸上是否存在點(diǎn),使得,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案