日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,經(jīng)過點(0,
          2
          )
          且斜率為k的直線l與橢圓
          x2
          2
          +y2=1
          有兩個不同的交點P和Q.
          (Ⅰ)求k的取值范圍;
          (Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量
          OP
          +
          OQ
          AB
          共線?如果存在,求k值;如果不存在,請說明理由.
          分析:(1)直線l與橢圓有兩個不同的交點,即方程組有2個不同解,轉(zhuǎn)化為判別式大于0.
          (2)利用2個向量共線時,坐標(biāo)之間的關(guān)系,由一元二次方程根與系數(shù)的關(guān)系求兩根之和,解方程求常數(shù)k.
          解答:解:(Ⅰ)由已知條件,直線l的方程為y=kx+
          2
          ,
          代入橢圓方程得
          x2
          2
          +(kx+
          2
          )2=1

          整理得(
          1
          2
          +k2)x2+2
          2
          kx+1=0

          直線l與橢圓有兩個不同的交點P和Q,等價于①的判別式△=8k2-4(
          1
          2
          +k2)=4k2-2>0
          ,
          解得k<-
          2
          2
          k>
          2
          2
          .即k的取值范圍為(-∞,-
          2
          2
          )∪(
          2
          2
          ,+∞)

          (Ⅱ)設(shè)P(x1,y1),Q(x2,y2),則
          OP
          +
          OQ
          =(x1+x2,y1+y2)
          ,
          由方程①,x1+x2=-
          4
          2
          k
          1+2k2
          . ②
          y1+y2=k(x1+x2)+2
          2
          . ③
          A(
          2
          ,0),B(0,1),
          AB
          =(-
          2
          ,1)

          所以
          OP
          +
          OQ
          AB
          共線等價于x1+x2=-
          2
          (y1+y2)
          ,
          將②③代入上式,解得k=
          2
          2

          由(Ⅰ)知k<-
          2
          2
          k>
          2
          2
          ,
          故沒有符合題意的常數(shù)k.
          點評:本題主要考查直線和橢圓相交的性質(zhì),2個向量共線的條件,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)而思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個交點到橢圓兩焦點的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標(biāo)是
          3
          5
          ,點B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案